Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Li Xiangyi,Liu Guoqiang,He Yijun, et al. Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones[J]. Haiyang Xuebao,2021, 43(11):61–69 doi: 10.12284/hyxb2021174
Citation: Li Xiangyi,Liu Guoqiang,He Yijun, et al. Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones[J]. Haiyang Xuebao,2021, 43(11):61–69 doi: 10.12284/hyxb2021174

Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones

doi: 10.12284/hyxb2021174
  • Received Date: 2021-02-10
  • Rev Recd Date: 2021-04-08
  • Available Online: 2021-08-25
  • Publish Date: 2021-12-31
  • Ocean waves can affect the roughness of the ocean surface, and the waves generated by tropical cyclones impact the momentum and energy fluxes across the air-sea interface. In this study, the impacts of ocean waves on the momentum and energy fluxes under tropical cyclones is examined by using the tropical cyclone observation dataset IBTrACS (International Best Track Archive for Climate Stewardship) and the simulations from wave model WW III (WAVEWATCH III). It is found that the intensity of tropical cyclones increased by about 1 m/s every decade in the past 30 years, but the change of translation speed is not obvious. For the stronger tropical cyclones, the difference for momentum flux and the energy flux between the air-sea interface can be significantly increased by the waves. Owing to the asymmetry of wind and surface wave fields under tropical cyclones, momentum difference and energy difference also demonstrate asymmetric distribution: the area with larger momentum difference is behind the moving direction of tropical cyclone, while energy difference is the largest in the right-rear quadrant, and both are relatively smaller in the left front quadrant. The inverse wave age is highly correlated with momentum difference and energy difference, and the correlation coefficient is about 0.95, indicating that the younger the surface wave, the more momentum and energy absorbed and stored by surface wave field. The inverse wave age increases with the increase of tropical cyclone translation speed, and the speed is positively correlated with momentum difference and energy difference according to the correlation coefficient above 0.8. Therefore, the surface waves affect the distribution and magnitude of momentum and energy input from the atmosphere to the ocean under tropical cyclones. In the future study of ocean boundary dynamics and thermodynamics, especially the study of tropical cyclones, considering the influence of ocean wave evolution is necessary.
  • loading
  • [1]
    丁亚梅, 毛科峰, 萧中乐, 等. 台风条件下朗缪尔环流对上层海洋混合的影响研究进展[J]. 海洋学报, 2018, 40(1): 1−9.

    Ding Yamei, Mao Kefeng, Xiao Zhongle, et al. Progress in the impacts of Langmuir Circulation in upper ocean mixing under typhoon condition[J]. Haiyang Xuebao, 2018, 40(1): 1−9.
    [2]
    管长龙, 张文清, 朱冬琳, 等. 上层海洋中浪致混合研究评述——研究进展及存在问题[J]. 中国海洋大学学报(自然科学版), 2014, 44(10): 20−24.

    Guan Changlong, Zhang Wenqing, Zhu Donglin, et al. Review of research on surface wave induced mixing in upper ocean layer: progress and existing problems[J]. Periodical of Ocean University of China, 2014, 44(10): 20−24.
    [3]
    Komen G J, Cavaleri L, Donelan M, et al. Dynamics and modelling of ocean waves[J]. Dynamics of Atmospheres & Oceans, 1994, 25(4): 276−278.
    [4]
    Mellor G L, Donelan M A, Oey L Y. A surface wave model for coupling with numerical ocean circulation models[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(10): 1785−1807. doi: 10.1175/2008JTECHO573.1
    [5]
    王平, 陈葆德, 曾智华. 海洋飞沫对热带气旋边界层结构的影响[J]. 海洋学报, 2014, 36(9): 84−93.

    Wang Ping, Chen Baode, Zeng Zhihua. Effect of sea spray on tropical cyclone boundary layer structure[J]. Haiyang Xuebao, 2014, 36(9): 84−93.
    [6]
    Donelan M A, Curcic M, Chen S S, et al. Modeling waves and wind stress[J]. Journal of Geophysical Research Oceans, 2012, 117(C11): C00J23.
    [7]
    Dobson F W. Measurements of atmospheric pressure on wind-generated sea waves[J]. Journal of Fluid Mechanics, 1971, 48(1): 91−127. doi: 10.1017/S0022112071001496
    [8]
    Donelan M A. Air-water exchange processes[M]//Imberger J. Physical Processes in Lakes and Oceans. Washington: American Geophysical Union (AGU), 1998.
    [9]
    Snyder R L, Dobson F W, Elliott J A, et al. Array measurements of atmospheric pressure fluctuations above surface gravity waves[J]. Journal of Fluid Mechanics, 1981, 102: 1−59. doi: 10.1017/S0022112081002528
    [10]
    Schlichting H. Boundary-Layer Theory[M]. 7th ed. Kestin J, trans. New York: McGraw-Hill, 1979.
    [11]
    Ardhuin F, Chapron B, Elfouhaily T. Waves and the air-sea momentum budget: implications for ocean circulation modeling[J]. Journal of Physical Oceanography, 2004, 34(7): 1741−1755. doi: 10.1175/1520-0485(2004)034<1741:WATAMB>2.0.CO;2
    [12]
    Janssen P A E M. Ocean wave effects on the daily cycle in SST[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J32.
    [13]
    Liu Guoqiang, Perrie W, Hughes C. Surface wave effects on the wind-power input to mixed layer near-inertial motions[J]. Journal of Physical Oceanography, 2017, 47(5): 1077−1093. doi: 10.1175/JPO-D-16-0198.1
    [14]
    Fan Yalin, Ginis I, Hara T. The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones[J]. Journal of Physical Oceanography, 2009, 39(4): 1019−1034. doi: 10.1175/2008JPO4066.1
    [15]
    Wright C W, Walsh E J, Vandemark D, et al. Hurricane directional wave spectrum spatial variation in the open ocean[J]. Journal of Physical Oceanography, 2001, 31(8): 2472−2488. doi: 10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2
    [16]
    Walsh E J, Wright C W, Vandemark D, et al. Hurricane directional wave spectrum spatial variation at landfall[J]. Journal of Physical Oceanography, 2002, 32(6): 1667−1684. doi: 10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2
    [17]
    Fan Yalin, Ginis I, Hara T. Momentum flux budget across the air-sea interface under uniform and tropical cyclone winds[J]. Journal of Physical Oceanography, 2010, 40(10): 2221−2242. doi: 10.1175/2010JPO4299.1
    [18]
    Curcic M. Explicit air-sea momentum exchange in coupled atmosphere-wave-ocean modeling of tropical cyclones[D]. Coral Gables: University of Miami, 2015.
    [19]
    Drennan W M, Kahma K K, Donelan M A. On momentum flux and velocity spectra over waves[J]. Boundary-Layer Meteorology, 1999, 92(3): 489−515. doi: 10.1023/A:1002054820455
    [20]
    Grachev A A, Fairall C W. Upward momentum transfer in the marine boundary layer[J]. Journal of Physical Oceanography, 2001, 31(7): 1698−1711. doi: 10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2
    [21]
    Smedman A, Högström U, Bergström H, et al. A case study of air-sea interaction during swell conditions[J]. Journal of Geophysical Research Oceans, 1999, 104(C11): 25833−25851. doi: 10.1029/1999JC900213
    [22]
    Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS)[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
    [23]
    Rascle N, Ardhuin F. A global wave parameter database for geophysical applications. part 2: model validation with improved source term parameterization[J]. Ocean Modelling, 2013, 70: 174−188. doi: 10.1016/j.ocemod.2012.12.001
    [24]
    Kossin J P, Olander T L, Knapp K R. Trend analysis with a new global record of tropical cyclone intensity[J]. Journal of Climate, 2013, 26(24): 9960−9976. doi: 10.1175/JCLI-D-13-00262.1
    [25]
    Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [26]
    蔡晓杰, 姜华, 王辉, 等. 西北太平洋热带气旋与上层海洋热含量的关系[J]. 海洋学报, 2013, 35(3): 28−35.

    Cai Xiaojie, Jiang Hua, Wang Hui, et al. The relationship between tropical cyclone in the northwest Pacific and upper ocean heat content[J]. Haiyang Xuebao, 2013, 35(3): 28−35.
    [27]
    Kossin J P. A global slowdown of tropical-cyclone translation speed[J]. Nature, 2018, 558(7708): 104−107. doi: 10.1038/s41586-018-0158-3
    [28]
    Zhang Lin, Oey L. Young ocean waves favor the rapid intensification of tropical cyclones—a global observational analysis[J]. Monthly Weather Review, 2019, 147(1): 311−328. doi: 10.1175/MWR-D-18-0214.1
    [29]
    Zhang Lin, Oey L. An observational analysis of ocean surface waves in tropical cyclones in the western north Pacific Ocean[J]. Journal of Geophysical Research Oceans, 2019, 124(1): 184−195. doi: 10.1029/2018JC014517
    [30]
    Bowyer P J, MacAfee A W. The theory of trapped-fetch waves with tropical cyclones—an operational perspective[J]. Weather and Forecasting, 2005, 20(3): 229−244. doi: 10.1175/WAF849.1
    [31]
    方钟圣, 金承仪. 日本浮标站台风浪波高与风速等参数的统计分析[J]. 船舶力学, 2003, 7(5): 1−10. doi: 10.3969/j.issn.1007-7294.2003.05.001

    Fang Zhongsheng, Jin Chengyi. Statistical analysis on wave height, wind speed and other parameters due to tropical cyclones in the Northwest Pacific area[J]. Journal of Ship Mechanics, 2003, 7(5): 1−10. doi: 10.3969/j.issn.1007-7294.2003.05.001
    [32]
    Chang Yuchia, Tseng R S, Chu P C, et al. Observed strong currents under global tropical cyclones[J]. Journal of Marine Systems, 2016, 159: 33−40. doi: 10.1016/j.jmarsys.2016.03.001
    [33]
    Tamizi A, Young I R. The spatial distribution of ocean waves in tropical cyclones[J]. Journal of Physical Oceanography, 2020, 50(8): 2123−2139. doi: 10.1175/JPO-D-20-0020.1
    [34]
    Ardhuin F, Jenkins A D. On the interaction of surface waves and upper ocean turbulence[J]. Journal of Physical Oceanography, 2006, 36(3): 551−557. doi: 10.1175/JPO2862.1
    [35]
    Hanley K E, Belcher S E, Sullivan P P. A global climatology of wind-wave interaction[J]. Journal of Physical Oceanography, 2010, 40(6): 1263−1282. doi: 10.1175/2010JPO4377.1
    [36]
    Xie Lian, Bao Shaowu, Pietrafesa L J, et al. A real-time hurricane surface wind forecasting model: formulation and verification[J]. Monthly Weather Review, 2006, 134(5): 1355−1370. doi: 10.1175/MWR3126.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (408) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return