Citation: | Li Xiangyi,Liu Guoqiang,He Yijun, et al. Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones[J]. Haiyang Xuebao,2021, 43(11):61–69 doi: 10.12284/hyxb2021174 |
[1] |
丁亚梅, 毛科峰, 萧中乐, 等. 台风条件下朗缪尔环流对上层海洋混合的影响研究进展[J]. 海洋学报, 2018, 40(1): 1−9.
Ding Yamei, Mao Kefeng, Xiao Zhongle, et al. Progress in the impacts of Langmuir Circulation in upper ocean mixing under typhoon condition[J]. Haiyang Xuebao, 2018, 40(1): 1−9.
|
[2] |
管长龙, 张文清, 朱冬琳, 等. 上层海洋中浪致混合研究评述——研究进展及存在问题[J]. 中国海洋大学学报(自然科学版), 2014, 44(10): 20−24.
Guan Changlong, Zhang Wenqing, Zhu Donglin, et al. Review of research on surface wave induced mixing in upper ocean layer: progress and existing problems[J]. Periodical of Ocean University of China, 2014, 44(10): 20−24.
|
[3] |
Komen G J, Cavaleri L, Donelan M, et al. Dynamics and modelling of ocean waves[J]. Dynamics of Atmospheres & Oceans, 1994, 25(4): 276−278.
|
[4] |
Mellor G L, Donelan M A, Oey L Y. A surface wave model for coupling with numerical ocean circulation models[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(10): 1785−1807. doi: 10.1175/2008JTECHO573.1
|
[5] |
王平, 陈葆德, 曾智华. 海洋飞沫对热带气旋边界层结构的影响[J]. 海洋学报, 2014, 36(9): 84−93.
Wang Ping, Chen Baode, Zeng Zhihua. Effect of sea spray on tropical cyclone boundary layer structure[J]. Haiyang Xuebao, 2014, 36(9): 84−93.
|
[6] |
Donelan M A, Curcic M, Chen S S, et al. Modeling waves and wind stress[J]. Journal of Geophysical Research Oceans, 2012, 117(C11): C00J23.
|
[7] |
Dobson F W. Measurements of atmospheric pressure on wind-generated sea waves[J]. Journal of Fluid Mechanics, 1971, 48(1): 91−127. doi: 10.1017/S0022112071001496
|
[8] |
Donelan M A. Air-water exchange processes[M]//Imberger J. Physical Processes in Lakes and Oceans. Washington: American Geophysical Union (AGU), 1998.
|
[9] |
Snyder R L, Dobson F W, Elliott J A, et al. Array measurements of atmospheric pressure fluctuations above surface gravity waves[J]. Journal of Fluid Mechanics, 1981, 102: 1−59. doi: 10.1017/S0022112081002528
|
[10] |
Schlichting H. Boundary-Layer Theory[M]. 7th ed. Kestin J, trans. New York: McGraw-Hill, 1979.
|
[11] |
Ardhuin F, Chapron B, Elfouhaily T. Waves and the air-sea momentum budget: implications for ocean circulation modeling[J]. Journal of Physical Oceanography, 2004, 34(7): 1741−1755. doi: 10.1175/1520-0485(2004)034<1741:WATAMB>2.0.CO;2
|
[12] |
Janssen P A E M. Ocean wave effects on the daily cycle in SST[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J32.
|
[13] |
Liu Guoqiang, Perrie W, Hughes C. Surface wave effects on the wind-power input to mixed layer near-inertial motions[J]. Journal of Physical Oceanography, 2017, 47(5): 1077−1093. doi: 10.1175/JPO-D-16-0198.1
|
[14] |
Fan Yalin, Ginis I, Hara T. The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones[J]. Journal of Physical Oceanography, 2009, 39(4): 1019−1034. doi: 10.1175/2008JPO4066.1
|
[15] |
Wright C W, Walsh E J, Vandemark D, et al. Hurricane directional wave spectrum spatial variation in the open ocean[J]. Journal of Physical Oceanography, 2001, 31(8): 2472−2488. doi: 10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2
|
[16] |
Walsh E J, Wright C W, Vandemark D, et al. Hurricane directional wave spectrum spatial variation at landfall[J]. Journal of Physical Oceanography, 2002, 32(6): 1667−1684. doi: 10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2
|
[17] |
Fan Yalin, Ginis I, Hara T. Momentum flux budget across the air-sea interface under uniform and tropical cyclone winds[J]. Journal of Physical Oceanography, 2010, 40(10): 2221−2242. doi: 10.1175/2010JPO4299.1
|
[18] |
Curcic M. Explicit air-sea momentum exchange in coupled atmosphere-wave-ocean modeling of tropical cyclones[D]. Coral Gables: University of Miami, 2015.
|
[19] |
Drennan W M, Kahma K K, Donelan M A. On momentum flux and velocity spectra over waves[J]. Boundary-Layer Meteorology, 1999, 92(3): 489−515. doi: 10.1023/A:1002054820455
|
[20] |
Grachev A A, Fairall C W. Upward momentum transfer in the marine boundary layer[J]. Journal of Physical Oceanography, 2001, 31(7): 1698−1711. doi: 10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2
|
[21] |
Smedman A, Högström U, Bergström H, et al. A case study of air-sea interaction during swell conditions[J]. Journal of Geophysical Research Oceans, 1999, 104(C11): 25833−25851. doi: 10.1029/1999JC900213
|
[22] |
Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS)[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
|
[23] |
Rascle N, Ardhuin F. A global wave parameter database for geophysical applications. part 2: model validation with improved source term parameterization[J]. Ocean Modelling, 2013, 70: 174−188. doi: 10.1016/j.ocemod.2012.12.001
|
[24] |
Kossin J P, Olander T L, Knapp K R. Trend analysis with a new global record of tropical cyclone intensity[J]. Journal of Climate, 2013, 26(24): 9960−9976. doi: 10.1175/JCLI-D-13-00262.1
|
[25] |
Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
|
[26] |
蔡晓杰, 姜华, 王辉, 等. 西北太平洋热带气旋与上层海洋热含量的关系[J]. 海洋学报, 2013, 35(3): 28−35.
Cai Xiaojie, Jiang Hua, Wang Hui, et al. The relationship between tropical cyclone in the northwest Pacific and upper ocean heat content[J]. Haiyang Xuebao, 2013, 35(3): 28−35.
|
[27] |
Kossin J P. A global slowdown of tropical-cyclone translation speed[J]. Nature, 2018, 558(7708): 104−107. doi: 10.1038/s41586-018-0158-3
|
[28] |
Zhang Lin, Oey L. Young ocean waves favor the rapid intensification of tropical cyclones—a global observational analysis[J]. Monthly Weather Review, 2019, 147(1): 311−328. doi: 10.1175/MWR-D-18-0214.1
|
[29] |
Zhang Lin, Oey L. An observational analysis of ocean surface waves in tropical cyclones in the western north Pacific Ocean[J]. Journal of Geophysical Research Oceans, 2019, 124(1): 184−195. doi: 10.1029/2018JC014517
|
[30] |
Bowyer P J, MacAfee A W. The theory of trapped-fetch waves with tropical cyclones—an operational perspective[J]. Weather and Forecasting, 2005, 20(3): 229−244. doi: 10.1175/WAF849.1
|
[31] |
方钟圣, 金承仪. 日本浮标站台风浪波高与风速等参数的统计分析[J]. 船舶力学, 2003, 7(5): 1−10. doi: 10.3969/j.issn.1007-7294.2003.05.001
Fang Zhongsheng, Jin Chengyi. Statistical analysis on wave height, wind speed and other parameters due to tropical cyclones in the Northwest Pacific area[J]. Journal of Ship Mechanics, 2003, 7(5): 1−10. doi: 10.3969/j.issn.1007-7294.2003.05.001
|
[32] |
Chang Yuchia, Tseng R S, Chu P C, et al. Observed strong currents under global tropical cyclones[J]. Journal of Marine Systems, 2016, 159: 33−40. doi: 10.1016/j.jmarsys.2016.03.001
|
[33] |
Tamizi A, Young I R. The spatial distribution of ocean waves in tropical cyclones[J]. Journal of Physical Oceanography, 2020, 50(8): 2123−2139. doi: 10.1175/JPO-D-20-0020.1
|
[34] |
Ardhuin F, Jenkins A D. On the interaction of surface waves and upper ocean turbulence[J]. Journal of Physical Oceanography, 2006, 36(3): 551−557. doi: 10.1175/JPO2862.1
|
[35] |
Hanley K E, Belcher S E, Sullivan P P. A global climatology of wind-wave interaction[J]. Journal of Physical Oceanography, 2010, 40(6): 1263−1282. doi: 10.1175/2010JPO4377.1
|
[36] |
Xie Lian, Bao Shaowu, Pietrafesa L J, et al. A real-time hurricane surface wind forecasting model: formulation and verification[J]. Monthly Weather Review, 2006, 134(5): 1355−1370. doi: 10.1175/MWR3126.1
|