Citation: | Wang Zhiyong,Zhang Mengyue,Yu Yaran, et al. A fine classification method for sea ice based on random forest combining texture feature and NDVI[J]. Haiyang Xuebao,2021, 43(10):149–156 doi: 10.12284/hyxb2021167 |
[1] |
Su Hua, Wang Yunpeng, Xiao Jie, et al. Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 13−20. doi: 10.1016/j.isprsjprs.2013.07.010
|
[2] |
Han Yanling, Wei Cong, Zhou Ruyan, et al. Combining 3D-CNN and squeeze-and-excitation networks for remote sensing sea ice image classification[J]. Mathematical Problems in Engineering, 2020, 2020: 8065396.
|
[3] |
Zhang Lu, Liu Huiying, Gu Xinwei, et al. Sea ice classification using TerraSAR-X ScanSAR data with removal of scalloping and interscan banding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2): 589−598. doi: 10.1109/JSTARS.2018.2889798
|
[4] |
Lohse J, Doulgeris A P, Dierking W. An optimal decision-tree design strategy and its application to sea ice classification from SAR imagery[J]. Remote Sensing, 2019, 11(13): 1574. doi: 10.3390/rs11131574
|
[5] |
Liu Huiying, Guo Huadong, Zhang Lu. SVM-Based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4): 1601−1613. doi: 10.1109/JSTARS.2014.2365215
|
[6] |
Han Yanling, Gao Yi, Zhang Yun, et al. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning[J]. Remote Sensing, 2019, 11(18): 2170. doi: 10.3390/rs11182170
|
[7] |
李宝辉, 侯一筠, 孙从容, 等. “北京一号”小卫星图像在渤海海冰监测中的应用[J]. 海洋学报, 2013, 35(4): 201−207.
Li Baohui, Hou Yijun, Sun Congrong, et al. The application of “Beijing No. 1” satellite monitoring sea ice images in the Bohai Sea[J]. Haiyang Xuebao, 2013, 35(4): 201−207.
|
[8] |
王姝力, 王志勇, 王磊. 基于Landsat-8和Sentinel-1A辽东湾海冰分类研究[J]. 北京测绘, 2019, 33(12): 1486−1492.
Wang Shuli, Wang Zhiyong, Wang Lei. Study of sea ice classification of Landsat-8 and Sentinel-1A in Liaodong Bay[J]. Beijing Surveying and Mapping, 2019, 33(12): 1486−1492.
|
[9] |
韩彦岭, 李鹏, 张云, 等. 主动学习与半监督技术相结合的海冰图像分类[J]. 遥感信息, 2019, 34(2): 15−22. doi: 10.3969/j.issn.1000-3177.2019.02.003
Han Yanling, Li Peng, Zhang Yun, et al. Combining active learning with semi-supervised learning for sea ice image classification[J]. Remote Sensing Information, 2019, 34(2): 15−22. doi: 10.3969/j.issn.1000-3177.2019.02.003
|
[10] |
张明, 吕晓琪, 张晓峰, 等. 结合纹理特征的SVM海冰分类方法研究[J]. 海洋学报, 2018, 40(11): 149−156.
Zhang Ming, Lü Xiaoqi, Zhang Xiaofeng, et al. Research on SVM sea ice classification based on texture features[J]. Haiyang Xuebao, 2018, 40(11): 149−156.
|
[11] |
屈猛, 庞小平, 赵羲, 等. 利用多源遥感数据识别波弗特海冰间水道[J]. 武汉大学学报(信息科学版), 2019, 44(6): 917−924.
Qu Meng, Pang Xiaoping, Zhao Xi, et al. Detection of sea ice lead in Beaufort Sea based on multisensory remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 917−924.
|
[12] |
Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610−621. doi: 10.1109/TSMC.1973.4309314
|
[13] |
Hill M J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect[J]. Remote Sensing of Environment, 2013, 137: 94−111. doi: 10.1016/j.rse.2013.06.004
|
[14] |
Lei Ruibo, Zhang Zhanhai, Matero I, et al. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010[J]. Polar Research, 2012, 31(1): 17325. doi: 10.3402/polar.v31i0.17325
|
[15] |
Gerland S, Winther J G, Børre Ørbæk J, et al. Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard[J]. Polar Research, 1999, 18(2): 275−282. doi: 10.1111/j.1751-8369.1999.tb00304.x
|
[16] |
陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019, 35(4): 43−49. doi: 10.3969/j.issn.1672-0504.2019.04.007
Chen Qian, Zheng Lijuan, Li Xiaojuan, et al. Water body extraction from high-resolution satellite remote sensing images based on deep learning[J]. Geography and Geo-Information Science, 2019, 35(4): 43−49. doi: 10.3969/j.issn.1672-0504.2019.04.007
|
[17] |
Koutsias N, Mallinis G, Karteris M. A forward/backward principal component analysis of Landsat-7 ETM+ data to enhance the spectral signal of burnt surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 37−46. doi: 10.1016/j.isprsjprs.2008.06.004
|
[18] |
Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 93−104. doi: 10.1016/j.isprsjprs.2011.11.002
|
[19] |
李鹏, 普思寻, 李振洪, 等. 2000年以来胶州湾海岸线光学与SAR多源遥感变化监测研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1485−1492.
Li Peng, Pu Sixun, Li Zhenhong, et al. Coastline change monitoring of Jiaozhou Bay from multi-source SAR and optical remote sensing images since 2000[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1485−1492.
|
[20] |
Huang Wei, Sun Shunrong, Jiang Haibin, et al. GF-2 satellite 1m/4 m camera design and In-Orbit commissioning[J]. Chinese Journal of Electronics, 2018, 27(6): 1316−1321. doi: 10.1049/cje.2018.09.018
|
[21] |
Lohse J, Doulgeris A P, Dierking W. Incident angle dependence of Sentinel-1 texture features for sea ice classification[J]. Remote Sensing, 2021, 13(4): 552. doi: 10.3390/rs13040552
|
[22] |
罗丽程. 基于Sentinel-1数据的北极海冰提取及分类研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018.
Luo Licheng. Research on the extraction and classification of Arctic sea ice based on Sentinel-1 data[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics of the Chinese Academy of Sciences), 2018.
|