Citation: | Pan Wei,Zou Zhongshui,Song Jinbao, et al. Studies of wave-induced stresses under swell-dominated low wind speed condition[J]. Haiyang Xuebao,2021, 43(10):1–9 doi: 10.12284/hyxb2021165 |
[1] |
Monin A S, Yaglom A M. Statistical Fluid Mechanics[M]. Cambridge: The MIT Press, 1975.
|
[2] |
Oost W A, Komen G J, Jacobs C M J, et al. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE[J]. Boundary-Layer Meteorology, 2002, 103(3): 409−438. doi: 10.1023/A:1014913624535
|
[3] |
Drennan W M, Graber H C, Hauser D, et al. On the wave age dependence of wind stress over pure wind seas[J]. Journal of Geophysical Research, 2003, 108(C3): 8062. doi: 10.1029/2000JC000715
|
[4] |
Drennan W M, Taylor P K, Yelland M J. Parameterizing the sea surface roughness[J]. Journal of Physical Oceanography, 2005, 35(5): 835−848. doi: 10.1175/JPO2704.1
|
[5] |
Edson J B, Jampana V, Weller R A, et al. On the exchange of momentum over the open ocean[J]. Journal of Physical Oceanography, 2013, 43(8): 1589−1610. doi: 10.1175/JPO-D-12-0173.1
|
[6] |
Smedman A, Högström U, Bergström H, et al. A case study of air-sea interaction during swell conditions[J]. Journal of Geophysical Research: Oceans, 1999, 104(C11): 25833−25851. doi: 10.1029/1999JC900213
|
[7] |
Grachev A A, Fairall C W. Upward momentum transfer in the marine boundary layer[J]. Journal of Physical Oceanography, 2001, 31(7): 1698−1711. doi: 10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2
|
[8] |
Zou Zhongshui, Li Shuiqing, Huang Jian, et al. Atmospheric boundary layer turbulence in the presence of swell: Turbulent kinetic energy budget, monin-obukhov similarity theory, and inertial dissipation method[J]. Journal of Physical Oceanography, 2020, 50(5): 1213−1225. doi: 10.1175/JPO-D-19-0136.1
|
[9] |
Babanin A V, Mcconochie J, Chalikov D. Winds near the surface of waves: Observations and modeling[J]. Journal of Physical Oceanography, 2018, 48(5): 1079−1088. doi: 10.1175/JPO-D-17-0009.1
|
[10] |
Voermans J J, Rapizo H, Ma Hongyu, et al. Air-sea momentum fluxes during tropical cyclone Olwyn[J]. Journal of Physical Oceanography, 2019, 49(6): 1369−1379. doi: 10.1175/JPO-D-18-0261.1
|
[11] |
Geernaert G L. Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea[J]. Journal of Geophysical Research, 1988, 93(C7): 8215−8220. doi: 10.1029/JC093iC07p08215
|
[12] |
Grachev A A, Fairall C W, Hare J E, et al. Wind stress vector over ocean waves[J]. Journal of Physical Oceanography, 2003, 33(11): 2408−2429. doi: 10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2
|
[13] |
Zhang F W, Drennan W M, Haus B K, et al. On wind-wave-current interactions during the shoaling waves experiment[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C01018.
|
[14] |
Zou Zhongshui, Song Jinbao, Li Peiliang, et al. Effects of swell waves on atmospheric boundary layer turbulence: A low wind field study[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5671−5685. doi: 10.1029/2019JC015153
|
[15] |
Chen Gang, Belcher S E. Effects of long waves on wind-generated waves[J]. Journal of Physical Oceanography, 2000, 30(9): 2246−2256. doi: 10.1175/1520-0485(2000)030<2246:EOLWOW>2.0.CO;2
|
[16] |
García-Nava H, Ocampo-Torres F J, Hwang P A, et al. Reduction of wind stress due to swell at high wind conditions[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): 1−11.
|
[17] |
陈汉宝, 刘海源, 徐亚男, 等. 风浪与涌浪相互影响的实验[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(12): 1122−1126.
Chen Hanbao, Liu Haiyuan, Xu Ya’nan, et al. Experiment on interaction between wind wave and swell[J]. Journal of Tianjin University (Science and Technology), 2013, 46(12): 1122−1126.
|
[18] |
Högström U, Sahlée E, Smedman A S, et al. Surface stress over the ocean in swell-dominated conditions during moderate winds[J]. Journal of the Atmospheric Sciences, 2015, 72(12): 4777−4795. doi: 10.1175/JAS-D-15-0139.1
|
[19] |
Chen Sheng, Qiao Fangli, Jiang Wenzheng, et al. Impact of surface waves on wind stress under low to moderate wind conditions[J]. Journal of Physical Oceanography, 2019, 49(8): 2017−2028. doi: 10.1175/JPO-D-18-0266.1
|
[20] |
Young I R. Directional spectra of hurricane wind waves[J]. Journal of Geophysical Research: Oceans, 2006, 111(C8): C08020.
|
[21] |
Kahma K K, Donelan M A, Drennan W M, et al. Evidence of energy and momentum flux from swell to wind[J]. Journal of Physical Oceanography, 2016, 46(7): 2143−2156. doi: 10.1175/JPO-D-15-0213.1
|
[22] |
Högström U, Sahlée E, Smedman A S, et al. The transition from downward to upward air-sea momentum flux in swell-dominated light wind conditions[J]. Journal of the Atmospheric Sciences, 2018, 75(8): 2579−2588. doi: 10.1175/JAS-D-17-0334.1
|
[23] |
Zou Zhongshui, Zhao Dongliang, Zhang Jun, et al. The influence of swell on the atmospheric boundary layer under nonneutral conditions[J]. Journal of Physical Oceanography, 2018, 48(4): 925−936. doi: 10.1175/JPO-D-17-0195.1
|
[24] |
Buckley M P, Veron F. Structure of the airflow above surface waves[J]. Journal of Physical Oceanography, 2016, 46(5): 1377−1397. doi: 10.1175/JPO-D-15-0135.1
|
[25] |
Rieder K F, Smith J A. Removing wave effects from the wind stress vector[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1363−1374. doi: 10.1029/97JC02571
|
[26] |
Makin V K, Kudryavtsev V N, Mastenbroek C. Drag of the sea surface[J]. Boundary-Layer Meteorology, 1995, 73(1/2): 159−182.
|
[27] |
Wu Lichuan, Hristov T, Rutgersson A. Vertical profiles of wave-coherent momentum flux and velocity variances in the marine atmospheric boundary layer[J]. Journal of Physical Oceanography, 2018, 48(3): 625−641. doi: 10.1175/JPO-D-17-0052.1
|
[28] |
Hanley K E, Belcher S E. Wave-driven wind jets in the marine atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2008, 65(8): 2646−2660. doi: 10.1175/2007JAS2562.1
|
[29] |
Sullivan P P, Edson J B, Hristov T, et al. Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves[J]. Journal of the Atmospheric Sciences, 2008, 65(4): 1225−1245. doi: 10.1175/2007JAS2427.1
|
[30] |
Semedo A, Saetra Ø, Rutgersson A, et al. Wave-induced wind in the marine boundary layer[J]. Journal of the Atmospheric Sciences, 2009, 66(8): 2256−2271. doi: 10.1175/2009JAS3018.1
|
[31] |
Belcher S E, Hunt J C R. Turbulent shear flow over slowly moving waves[J]. Journal of Fluid Mechanics, 1993, 251: 109−148. doi: 10.1017/S0022112093003350
|
[32] |
Plant W J. A relationship between wind stress and wave slope[J]. Journal of Geophysical Research, 1982, 87(C3): 1961−1967. doi: 10.1029/JC087iC03p01961
|
[33] |
Cohen J E, Belcher S E. Turbulent shear flow over fast-moving waves[J]. Journal of Fluid Mechanics, 1999, 386(1): 345−372.
|
[34] |
Zou Zhongshui, Zhao Dongliang, Liu Bin, et al. Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 4123−4142. doi: 10.1002/2016JC012399
|
[35] |
Högström U, Rutgersson A, Sahlée E, et al. Air-sea interaction features in the Baltic Sea and at a pacific trade-wind site: An inter-comparison study[J]. Boundary-Layer Meteorology, 2013, 147(1): 139−163. doi: 10.1007/s10546-012-9776-8
|
[36] |
Chen Sheng, Qiao Fangli, Huang Chuanjiang, et al. Deviation of wind stress from wind direction under low wind conditions[J]. Journal of Geophysical Research: Oceans, 2018, 123(12): 9357−9368. doi: 10.1029/2018JC014137
|
[37] |
Miles J W. On the generation of surface waves by shear flows[J]. Journal of Fluid Mechanics, 1957, 3(2): 185−204. doi: 10.1017/S0022112057000567
|