Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Wang Binghua,Dong Xiaolong,Lin Wenming, et al. On the wind inversion characteristics of China-France Oceanography Satellite microwave scatterometer[J]. Haiyang Xuebao,2021, 43(11):157–165 doi: 10.12284/hyxb2021164
Citation: Wang Binghua,Dong Xiaolong,Lin Wenming, et al. On the wind inversion characteristics of China-France Oceanography Satellite microwave scatterometer[J]. Haiyang Xuebao,2021, 43(11):157–165 doi: 10.12284/hyxb2021164

On the wind inversion characteristics of China-France Oceanography Satellite microwave scatterometer

doi: 10.12284/hyxb2021164
  • Received Date: 2020-12-09
  • Rev Recd Date: 2021-04-28
  • Available Online: 2021-08-16
  • Publish Date: 2021-12-31
  • China-France Oceanography Satellite scatterometer (CSCAT) is the first rotating fan beam scatterometer internationally, which was flown onboard China-France Oceanography Satellite (CFOSAT) on October 2018. Based on the maximum likelihood estimation wind inversion algorithm, the residual characteristics of the CSCAT sea surface wind inversion cost function in detail, focuses on the influence of the new observation geometry on the wind inversion residual and wind quality is analyzed in this article, we establish the likelihood probability model function of the ambiguous solutions. The results show that the residual characteristic of the CSCAT wind inversion varies with the position of the wind vector cell (WVC) across the swath. The exponential distribution of the ambiguous solution likelihood probability model function is between −0.4 and −1.8. The results provide an important reference for the quality control of CSCAT and the refinement adjustment of the two dimensional variational ambiguity removal algorithm.
  • loading
  • [1]
    Liu W T. Progress in scatterometer application[J]. Journal of Oceanography, 2002, 58(1): 121−136. doi: 10.1023/A:1015832919110
    [2]
    蒋兴伟, 林明森, 张有广, 等. 海洋遥感卫星及应用发展历程与趋势展望[J]. 卫星应用, 2018(5): 10−18. doi: 10.3969/j.issn.1674-9030.2018.05.005

    Jiang Xingwei, Lin Mingsen, Zhang Youguang, et al. Progress and trend of ocean remote sensing satellites and their applications[J]. Satellite Application, 2018(5): 10−18. doi: 10.3969/j.issn.1674-9030.2018.05.005
    [3]
    Lin Wenming, Portabella M. Toward an improved wind quality control for RapidScat[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3922−3930. doi: 10.1109/TGRS.2017.2683720
    [4]
    Stoffelen A, Anderson D. Scatterometer data interpretation: measurement space and inversion[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(6): 1298−1313. doi: 10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2
    [5]
    Portabella M, Stoffelen A. Characterization of residual information for SeaWinds quality control[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2747−2759. doi: 10.1109/TGRS.2002.807750
    [6]
    De Vries J C W, Stoffelen A C M. 2D variational ambiguity removal[R]. Netherlands Remote Sensing Board (BCRS), Programme Bureau, Rijkswaterstaat Survey Department, 2000.
    [7]
    Liu Jianqiang, Lin Wenming, Dong Xiaolong, et al. First results from the rotating fan beam scatterometer onboard CFOSAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8793−8806. doi: 10.1109/TGRS.2020.2990708
    [8]
    Stiles B W, Dunbar R S. A neural network technique for improving the accuracy of scatterometer winds in rainy conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3114−3122. doi: 10.1109/TGRS.2010.2049362
    [9]
    Portabella M, Stoffelen A. A comparison of KNMI quality control and JPL rain flag for SeaWinds[J]. Canadian Journal of Remote Sensing, 2002, 28(3): 424−430. doi: 10.5589/m02-040
    [10]
    Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852
    [11]
    解学通, 方裕, 陈晓翔, 等. 基于最大似然估计的海面风场反演算法研究[J]. 地理与地理信息科学, 2005, 21(1): 30−33. doi: 10.3969/j.issn.1672-0504.2005.01.009

    Xie Xuetong, Fang Yu, Chen Xiaoxiang, et al. Research on numerical wind vector retrieval algorithm based on maximum likelihood estimation[J]. Geography and Geo-Information Science, 2005, 21(1): 30−33. doi: 10.3969/j.issn.1672-0504.2005.01.009
    [12]
    Stoffelen A, Portabella M. On Bayesian scatterometer wind inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1523−1533. doi: 10.1109/TGRS.2005.862502
    [13]
    Anderson C, Bonekamp H, Duff C. Analysis of ASCAT ocean backscatter measurement noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2449−2457. doi: 10.1109/TGRS.2012.2190739
    [14]
    Portabella M, Stoffelen A. A probabilistic approach for SeaWinds data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 130(596): 127−152.
    [15]
    Gohil B S, Sarkar A, Agarwal V K. A new algorithm for wind-vector retrieval from scatterometers[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 387−391. doi: 10.1109/LGRS.2008.917129
    [16]
    Portabella M, Stoffelen A. Rain detection and quality control of SeaWinds[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(7): 1171−1183. doi: 10.1175/1520-0426(2001)018<1171:RDAQCO>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (457) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return