Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Guo Zhenqi,Liu Tao,Wu Chen, et al. Characterization and reconstruction of meso-structure of gas-bearing soils at different storage pressures[J]. Haiyang Xuebao,2021, 43(11):96–104 doi: 10.12284/hyxb2021154
Citation: Guo Zhenqi,Liu Tao,Wu Chen, et al. Characterization and reconstruction of meso-structure of gas-bearing soils at different storage pressures[J]. Haiyang Xuebao,2021, 43(11):96–104 doi: 10.12284/hyxb2021154

Characterization and reconstruction of meso-structure of gas-bearing soils at different storage pressures

doi: 10.12284/hyxb2021154
  • Received Date: 2020-11-04
  • Rev Recd Date: 2021-01-14
  • Available Online: 2021-08-11
  • Publish Date: 2021-12-31
  • The storage pressure and reconstruction of the mesostructure of gas-bearing sediments are key factors in the study of shallow gas geohazards. Using an industrial CT scanning test system, vertical rotational (SR) scanning is used, with the position of the microfocus X-ray source fixed and the sample rotated at a constant speed of 360° along the XY plane, with a set rotation step of 0.3° per second, the gas-bearing samples in the reactor are pressurized to 2 MPa, 4 MPa, and 6 MPa, taking into account the best resolution of the sample imaging, the best detection range and other. The results show that the slices and reconstructed images obtained from the CT scan have good experimental results; the greyscale values of small bubbles increase when pressurized to 2 MPa; the overall greyscale values of gas increase significantly when pressurized to 6 MPa; the number of bubbles decrease with increasing bubble radius during the pressurization process; the pressurization process lead to local changes in the solid-liquid-gas phase, which show that the volume of pore gas and pore water changes more than that of the soil skeleton. The overall change is greater than that of the soil skeleton, and the microscopic local location will have a greater rise or decrease. When the gas content at different locations rises and dominates, it will drive the reduction of pore water and the movement of the soil skeleton.
  • loading
  • [1]
    Fleischer P, Orsi T, Richardson M, et al. Distribution of free gas in marine sediments: a global overview[J]. Geo-Marine Letters, 2001, 21(2): 103−122. doi: 10.1007/s003670100072
    [2]
    李萍, 杜军, 刘乐军, 等. 我国近海海底浅层气分布特征[J]. 中国地质灾害与防治学报, 2010, 21(1): 69−74. doi: 10.3969/j.issn.1003-8035.2010.01.015

    Li Ping, Du Jun, Liu Lejun, et al. Distribution characteristics of the shallow gas in Chinese offshore seabed[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 69−74. doi: 10.3969/j.issn.1003-8035.2010.01.015
    [3]
    Robb G B N, Leighton T G, Dix J K, et al. Measuring bubble populations in gassy marine sediments: a review[C]//Proceedings of the Institute of Acoustics Spring Conference 2006: Futures in Acoustics: Today’s Research-Tomorrow’s Careers. UK: University of Southampton, 2006.
    [4]
    Gardner T. Modeling signal loss in surficial marine sediments containing occluded gas[J]. Journal of the Acoustical Society of America, 2003, 113(3): 1368−1378. doi: 10.1121/1.1542731
    [5]
    Jackson D R, Richardson M D. High-Frequency Seafloor Acoustics[M]. New York: Springer, 2007.
    [6]
    Anderson A L, Abegg F, Hawkins J A, et al. Bubble populations and acoustic interaction with the gassy floor of Eckernförde Bay[J]. Continental Shelf Research, 1998, 18(14/15): 1807−1838.
    [7]
    Warner G S, Nieber J L, Moore I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3): 653−660. doi: 10.2136/sssaj1989.03615995005300030001x
    [8]
    Sham W K. The undrained shear strength of soils containing large gas bubbles[D]. Belfast: Queen’s University of Belfast, 1989.
    [9]
    Wheeler S J. The undrained shear strength of soils containing large gas bubbles[J]. Geotechnique, 1988, 38(3): 399−413. doi: 10.1680/geot.1988.38.3.399
    [10]
    Sultan N, De Gennaro V, Puech A. Mechanical behaviour of gas-charged marine plastic sediments[J]. Geotechnique, 2012, 62(9): 751−766. doi: 10.1680/geot.12.OG.002
    [11]
    Best A I, Tuffin M D J, Dix J K, et al. Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B8): B08101.
    [12]
    Kim G Y, Narantsetseg B, Kim J W, et al. Physical properties and micro-and macro-structures of gassy sediments in the inner shelf of SE Korea[J]. Quaternary International, 2014, 344: 170−180. doi: 10.1016/j.quaint.2014.01.049
    [13]
    Hong Y, Wang L Z, Ng C W W, et al. Effect of initial pore pressure on undrained shear behaviour of fine-grained gassy soil[J]. Canadian Geotechnical Journal, 2017, 54(11): 1592−1600. doi: 10.1139/cgj-2017-0015
    [14]
    Thomas S, Hill A J, Clare M A, et al. Understanding engineering challenges posed by natural hydrocarbon infiltration and the development of authigenic carbonate[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2011.
    [15]
    Duffy S M, Wheeler S J, Bennell J D. Shear modulus of kaolin containing methane bubbles[J]. Journal of Geotechnical Engineering, 1994, 120(5): 781−796. doi: 10.1061/(ASCE)0733-9410(1994)120:5(781)
    [16]
    张巍, 梁小龙, 唐心煜, 等. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683−689. doi: 10.11779/CJGE201704013

    Zhang Wei, Liang Xiaolong, Tang Xinyu, et al. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683−689. doi: 10.11779/CJGE201704013
    [17]
    Liu L, Wilkinson J, Koca K, et al. The role of sediment structure in gas bubble storage and release[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(7): 1992−2005. doi: 10.1002/2016JG003456
    [18]
    Zhang Fengshou, Zhu Haiyan, Zhou Hangguo, et al. Discrete-element-method/computational-fluid-dynamics coupling simulation of proppant embedment and fracture conductivity after hydraulic fracturing[J]. SPE Journal, 2017, 22(2): 632−644. doi: 10.2118/185172-PA
    [19]
    邢磊, 焦静娟, 刘雪芹, 等. 渤海海域浅层气分布及地震特征分析[J]. 中国海洋大学学报, 2017, 47(11): 70−78.

    Xing Lei, Jiao Jingjuan, Liu Xueqin, et al. Distribution and seismic reflection characteristics of shallow gas in Bohai Sea[J]. Periodical of Ocean University of China, 2017, 47(11): 70−78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (348) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return