Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Wu Fangfang,Fu Zhiyi,Hu Linshu, et al. Retrieval of sea surface salinity in the Gulf of Mexico based on random forest method[J]. Haiyang Xuebao,2021, 43(9):126–136 doi: 10.12284/hyxb2021146
Citation: Wu Fangfang,Fu Zhiyi,Hu Linshu, et al. Retrieval of sea surface salinity in the Gulf of Mexico based on random forest method[J]. Haiyang Xuebao,2021, 43(9):126–136 doi: 10.12284/hyxb2021146

Retrieval of sea surface salinity in the Gulf of Mexico based on random forest method

doi: 10.12284/hyxb2021146
  • Received Date: 2021-02-03
  • Rev Recd Date: 2021-06-16
  • Available Online: 2021-07-22
  • Publish Date: 2021-09-25
  • Salinity is an important parameter to characterize physical and biogeo-chemical processes. Optical satellite images with high resolution can avoid radio frequency interference, and provide a feasible way to monitor sea surface salinity (SSS) in coastal regions. Using an extensive dataset of ship-based SSS and MODIS estimated remote sensing reflectance (Rrs) at 412 nm, 443 nm, 488 nm, 555 nm and 667 nm and sea surface temperature (SST) a random forest (RF) model has been utilized to retrieve the SSS. Based on the predicted SSS, we analyze the spatiotemporal heterogeneity of SSS in the Gulf of Mexico and contribution of each factor with correlations coefficient. The results show that: (1) the RF model can accurately estimate the SSS in the Gulf of Mexico (RMSE=0.335, R2=0.931); (2) the spatial distribution pattern of SSS shows a ring-shaped inward value increase, which is affected by river discharge, wind forcing and circulation; (3) there is a strong correlation between SSS and SST, and SST significantly impact in retrieving SSS; (4) the correlation between SST, Rrs and SSS appears spatial heterogeneity.
  • loading
  • [1]
    Devlin M J, Petus C, Da Silva, et al. Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data[J]. Remote Sensing, 2015, 7(10): 12909−12941. doi: 10.3390/rs71012909
    [2]
    Horner-Devine A R, Hetland R D, MacDonald D G. Mixing and transport in coastal river plumes[J]. Annual Review of Fluid Mechanics, 2015, 47: 569−594. doi: 10.1146/annurev-fluid-010313-141408
    [3]
    白雨, 赵亮, 刘境舟. 生态因子在黄海绿潮生消过程中的作用[J]. 海洋学报, 2019, 41(8): 97−105.

    Bai Yu, Zhao Liang, Liu Jingzhou. The role of ecological factors in the progress of the green tide in the Yellow Sea[J]. Haiyang Xuebao, 2019, 41(8): 97−105.
    [4]
    韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学: 地球科学, 2015, 58(4): 628−648. doi: 10.1007/s11430-014-5007-0

    Wei Qinsheng, Wang Baodong, Chen Jianfang, et al. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary[J]. Science China: Earth Sciences, 2015, 58(4): 628−648. doi: 10.1007/s11430-014-5007-0
    [5]
    Cannizzaro J P, Carlson Jr P R, Yarbro L A, et al. Optical variability along a river plume gradient: implications for management and remote sensing[J]. Estuarine, Coastal and Shelf Science, 2013, 131: 149−161. doi: 10.1016/j.ecss.2013.07.012
    [6]
    周博天. 海面盐度多源遥感协同反演方法研究[D]. 北京: 中国地质大学(北京), 2013.

    Zhou Botian. The study of sea surface salinity model based on multi-source remote sensing coordinated retrieval[D]. Beijing: China University of Geosciences (Beijing), 2013.
    [7]
    Vandermeulen R A, Arnone R, Ladner S, et al. Estimating sea surface salinity in coastal waters of the Gulf of Mexico using visible channels on SNPP-VIIRS[C]//Proceedings of SPIE 9111, Ocean Sensing and Monitoring VI. Baltimore, Maryland, United States: SPIE, 2014: 911109.
    [8]
    Liu Rongjie, Zhang Jie, Yao Haiyan, et al. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager[J]. Estuarine, Coastal and Shelf Science, 2017, 196: 227−236. doi: 10.1016/j.ecss.2017.07.004
    [9]
    Geiger E F, Grossi M D, Trembanis A C, et al. Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic[J]. Continental Shelf Research, 2013, 63(S1): S235−S242.
    [10]
    Kim D W, Park Y J, Jeong J Y, et al. Estimation of hourly sea surface salinity in the East China sea using geostationary ocean color imager measurements[J]. Remote Sensing, 2020, 12(5): 755. doi: 10.3390/rs12050755
    [11]
    Ahn Y H, Shanmugam P, Moon J E, et al. Satellite remote sensing of a low-salinity water plume in the East China Sea[J]. Annales Geophysicae, 2008, 26(7): 2019−2035. doi: 10.5194/angeo-26-2019-2008
    [12]
    Qing Song, Zhang Jie, Cui Tingwei, et al. Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea[J]. Remote Sensing of Environment, 2013, 136: 117−125. doi: 10.1016/j.rse.2013.04.016
    [13]
    张文. 基于智能计算的水体悬浮物遥感反演研究——以长江中游为例[D]. 北京: 中国科学院研究生院, 2012.

    Zhang Wen. Remote sensing retrieval of suspended matters based on intelligent calculation—a case study of middle Yangtze River[D]. Beijing: University of Chinese Academy of Sciences, 2012.
    [14]
    Chen Shuangling, Hu Chuanmin. Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements[J]. Remote Sensing of Environment, 2017, 201: 115−132. doi: 10.1016/j.rse.2017.09.004
    [15]
    王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49−55. doi: 10.3969/j.issn.1674-1285.2018.01.009

    Wang Yisen, Xia Shutao. A survey of random forests algorithms[J]. Information and Communications Technologies, 2018, 12(1): 49−55. doi: 10.3969/j.issn.1674-1285.2018.01.009
    [16]
    Rabalais N N, Turner R E, Wiseman Jr W J. Gulf of Mexico Hypoxia, A. K. A. “The dead zone”[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 235−263. doi: 10.1146/annurev.ecolsys.33.010802.150513
    [17]
    Otis D B, Le Hénaff M, Kourafalou V H, et al. Mississippi River and Campeche bank (Gulf of Mexico) episodes of cross-shelf export of coastal waters observed with satellites[J]. Remote Sensing, 2019, 11(6): 723. doi: 10.3390/rs11060723
    [18]
    Fu Zhiyi, Hu Linshu, Chen Zhende, et al. Estimating spatial and temporal variation in ocean surface pCO2 in the Gulf of Mexico using remote sensing and machine learning techniques[J]. Science of the Total Environment, 2020, 745: 140965. doi: 10.1016/j.scitotenv.2020.140965
    [19]
    Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
    [20]
    Ho T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832−844. doi: 10.1109/34.709601
    [21]
    Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123−140.
    [22]
    方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[J]. 遥感学报, 2019, 23(4): 756−772.

    Fang Xinrui, Wen Zhaofei, Chen Jilong, et al. Remote sensing estimation of suspended sediment concentration based on Random Forest Regression Model[J]. Journal of Remote Sensing, 2019, 23(4): 756−772.
    [23]
    Vazquez J, Gierach M M, Leben R R, et al. Initial results on the variability of sea surface salinity from Aquarius/SAC-D in the Gulf of Mexico[C]//American Geophysical Union, Fall Meeting 2012. San Francisco, CA: AGU, 2012.
    [24]
    Wiseman W J, Rabalais N N, Turner R E, et al. Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia[J]. Journal of Marine Systems, 1997, 12(1/4): 237−248.
    [25]
    Fournier S, Lee T, Gierach M M. Seasonal and interannual variations of sea surface salinity associated with the Mississippi River plume observed by SMOS and Aquarius[J]. Remote Sensing of Environment, 2016, 180: 431−439. doi: 10.1016/j.rse.2016.02.050
    [26]
    Fu Zhiyi, Wu Fangfang, Zhang Zhengliang, et al. Sea surface salinity estimation and spatial-temporal heterogeneity analysis in the gulf of Mexico[J]. Remote Sensing, 2021, 13(5): 881. doi: 10.3390/rs13050881
    [27]
    Binding C E, Bowers D G. Measuring the salinity of the Clyde Sea from remotely sensed ocean colour[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4): 605−611. doi: 10.1016/S0272-7714(02)00399-2
    [28]
    Wouthuyzen S, Tarigan S, Kusmanto E, et al. Measuring sea surface salinity of the Jakarta bay using remotely sensed of ocean color data acquired by modis sensor[J]. Marine Research in Indonesia, 2011, 36(2): 51−70.
    [29]
    Darecki M, Stramski D. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea[J]. Remote Sensing of Environment, 2004, 89(3): 326−350. doi: 10.1016/j.rse.2003.10.012
    [30]
    王林, 赵冬至, 杨建洪, 等. 大洋河河口海域有色溶解性有机物的光学特性及遥感反演模型[J]. 海洋学报, 2011, 33(1): 45−51.

    Wang Lin, Zhao Dongzhi, Yang Jianhong, et al. The optical properties and remote sensing retrieval model of chromophoric dissolved organic matter in the Dayang Estuary[J]. Haiyang Xuebao, 2011, 33(1): 45−51.
    [31]
    Johannessen S C, Miller W L, Cullen J J. Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color[J]. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3301. doi: 10.1029/2000JC000514
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (558) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return