Citation: | Wu Fangfang,Fu Zhiyi,Hu Linshu, et al. Retrieval of sea surface salinity in the Gulf of Mexico based on random forest method[J]. Haiyang Xuebao,2021, 43(9):126–136 doi: 10.12284/hyxb2021146 |
[1] |
Devlin M J, Petus C, Da Silva, et al. Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data[J]. Remote Sensing, 2015, 7(10): 12909−12941. doi: 10.3390/rs71012909
|
[2] |
Horner-Devine A R, Hetland R D, MacDonald D G. Mixing and transport in coastal river plumes[J]. Annual Review of Fluid Mechanics, 2015, 47: 569−594. doi: 10.1146/annurev-fluid-010313-141408
|
[3] |
白雨, 赵亮, 刘境舟. 生态因子在黄海绿潮生消过程中的作用[J]. 海洋学报, 2019, 41(8): 97−105.
Bai Yu, Zhao Liang, Liu Jingzhou. The role of ecological factors in the progress of the green tide in the Yellow Sea[J]. Haiyang Xuebao, 2019, 41(8): 97−105.
|
[4] |
韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学: 地球科学, 2015, 58(4): 628−648. doi: 10.1007/s11430-014-5007-0
Wei Qinsheng, Wang Baodong, Chen Jianfang, et al. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary[J]. Science China: Earth Sciences, 2015, 58(4): 628−648. doi: 10.1007/s11430-014-5007-0
|
[5] |
Cannizzaro J P, Carlson Jr P R, Yarbro L A, et al. Optical variability along a river plume gradient: implications for management and remote sensing[J]. Estuarine, Coastal and Shelf Science, 2013, 131: 149−161. doi: 10.1016/j.ecss.2013.07.012
|
[6] |
周博天. 海面盐度多源遥感协同反演方法研究[D]. 北京: 中国地质大学(北京), 2013.
Zhou Botian. The study of sea surface salinity model based on multi-source remote sensing coordinated retrieval[D]. Beijing: China University of Geosciences (Beijing), 2013.
|
[7] |
Vandermeulen R A, Arnone R, Ladner S, et al. Estimating sea surface salinity in coastal waters of the Gulf of Mexico using visible channels on SNPP-VIIRS[C]//Proceedings of SPIE 9111, Ocean Sensing and Monitoring VI. Baltimore, Maryland, United States: SPIE, 2014: 911109.
|
[8] |
Liu Rongjie, Zhang Jie, Yao Haiyan, et al. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager[J]. Estuarine, Coastal and Shelf Science, 2017, 196: 227−236. doi: 10.1016/j.ecss.2017.07.004
|
[9] |
Geiger E F, Grossi M D, Trembanis A C, et al. Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic[J]. Continental Shelf Research, 2013, 63(S1): S235−S242.
|
[10] |
Kim D W, Park Y J, Jeong J Y, et al. Estimation of hourly sea surface salinity in the East China sea using geostationary ocean color imager measurements[J]. Remote Sensing, 2020, 12(5): 755. doi: 10.3390/rs12050755
|
[11] |
Ahn Y H, Shanmugam P, Moon J E, et al. Satellite remote sensing of a low-salinity water plume in the East China Sea[J]. Annales Geophysicae, 2008, 26(7): 2019−2035. doi: 10.5194/angeo-26-2019-2008
|
[12] |
Qing Song, Zhang Jie, Cui Tingwei, et al. Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea[J]. Remote Sensing of Environment, 2013, 136: 117−125. doi: 10.1016/j.rse.2013.04.016
|
[13] |
张文. 基于智能计算的水体悬浮物遥感反演研究——以长江中游为例[D]. 北京: 中国科学院研究生院, 2012.
Zhang Wen. Remote sensing retrieval of suspended matters based on intelligent calculation—a case study of middle Yangtze River[D]. Beijing: University of Chinese Academy of Sciences, 2012.
|
[14] |
Chen Shuangling, Hu Chuanmin. Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements[J]. Remote Sensing of Environment, 2017, 201: 115−132. doi: 10.1016/j.rse.2017.09.004
|
[15] |
王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49−55. doi: 10.3969/j.issn.1674-1285.2018.01.009
Wang Yisen, Xia Shutao. A survey of random forests algorithms[J]. Information and Communications Technologies, 2018, 12(1): 49−55. doi: 10.3969/j.issn.1674-1285.2018.01.009
|
[16] |
Rabalais N N, Turner R E, Wiseman Jr W J. Gulf of Mexico Hypoxia, A. K. A. “The dead zone”[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 235−263. doi: 10.1146/annurev.ecolsys.33.010802.150513
|
[17] |
Otis D B, Le Hénaff M, Kourafalou V H, et al. Mississippi River and Campeche bank (Gulf of Mexico) episodes of cross-shelf export of coastal waters observed with satellites[J]. Remote Sensing, 2019, 11(6): 723. doi: 10.3390/rs11060723
|
[18] |
Fu Zhiyi, Hu Linshu, Chen Zhende, et al. Estimating spatial and temporal variation in ocean surface pCO2 in the Gulf of Mexico using remote sensing and machine learning techniques[J]. Science of the Total Environment, 2020, 745: 140965. doi: 10.1016/j.scitotenv.2020.140965
|
[19] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[20] |
Ho T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832−844. doi: 10.1109/34.709601
|
[21] |
Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123−140.
|
[22] |
方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[J]. 遥感学报, 2019, 23(4): 756−772.
Fang Xinrui, Wen Zhaofei, Chen Jilong, et al. Remote sensing estimation of suspended sediment concentration based on Random Forest Regression Model[J]. Journal of Remote Sensing, 2019, 23(4): 756−772.
|
[23] |
Vazquez J, Gierach M M, Leben R R, et al. Initial results on the variability of sea surface salinity from Aquarius/SAC-D in the Gulf of Mexico[C]//American Geophysical Union, Fall Meeting 2012. San Francisco, CA: AGU, 2012.
|
[24] |
Wiseman W J, Rabalais N N, Turner R E, et al. Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia[J]. Journal of Marine Systems, 1997, 12(1/4): 237−248.
|
[25] |
Fournier S, Lee T, Gierach M M. Seasonal and interannual variations of sea surface salinity associated with the Mississippi River plume observed by SMOS and Aquarius[J]. Remote Sensing of Environment, 2016, 180: 431−439. doi: 10.1016/j.rse.2016.02.050
|
[26] |
Fu Zhiyi, Wu Fangfang, Zhang Zhengliang, et al. Sea surface salinity estimation and spatial-temporal heterogeneity analysis in the gulf of Mexico[J]. Remote Sensing, 2021, 13(5): 881. doi: 10.3390/rs13050881
|
[27] |
Binding C E, Bowers D G. Measuring the salinity of the Clyde Sea from remotely sensed ocean colour[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4): 605−611. doi: 10.1016/S0272-7714(02)00399-2
|
[28] |
Wouthuyzen S, Tarigan S, Kusmanto E, et al. Measuring sea surface salinity of the Jakarta bay using remotely sensed of ocean color data acquired by modis sensor[J]. Marine Research in Indonesia, 2011, 36(2): 51−70.
|
[29] |
Darecki M, Stramski D. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea[J]. Remote Sensing of Environment, 2004, 89(3): 326−350. doi: 10.1016/j.rse.2003.10.012
|
[30] |
王林, 赵冬至, 杨建洪, 等. 大洋河河口海域有色溶解性有机物的光学特性及遥感反演模型[J]. 海洋学报, 2011, 33(1): 45−51.
Wang Lin, Zhao Dongzhi, Yang Jianhong, et al. The optical properties and remote sensing retrieval model of chromophoric dissolved organic matter in the Dayang Estuary[J]. Haiyang Xuebao, 2011, 33(1): 45−51.
|
[31] |
Johannessen S C, Miller W L, Cullen J J. Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color[J]. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3301. doi: 10.1029/2000JC000514
|