Citation: | Yang Yi,Nie Hongtao,Dong Chunming, et al. Improved estimation method of retreat onset dates based on sea ice concentration[J]. Haiyang Xuebao,2021, 43(7):152–161 doi: 10.12284/hyxb2021145 |
[1] |
Belchansky G I, Douglas D C, Platonov N G. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001[J]. Journal of Climate, 2004, 17(1): 67−80. doi: 10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
|
[2] |
Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. The Cryosphere, 2015, 9(1): 269−283. doi: 10.5194/tc-9-269-2015
|
[3] |
Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
|
[4] |
赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985−995.
Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985−995.
|
[5] |
Overland J E, Wood K R, Wang M Y. Warm Arctic-cold continents: Climate impacts of the newly open Arctic sea[J]. Polar Research, 2011, 30(1): 15787. doi: 10.3402/polar.v30i0.15787
|
[6] |
黄季夏, 张天媛, 曹云锋, 等. 北极海冰消融情景下东北航道通航性能演变分析[J]. 地理学报, 2021, 76(5): 1051−1064. doi: 10.11821/dlxb202105001
Huang Jixia, Zhang Tianyuan, Cao Yunfeng, et al. The evolution of navigation performance of Northeast Passage under the scenario of Arctic sea ice melting[J]. Acta Geographica Sinica, 2021, 76(5): 1051−1064. doi: 10.11821/dlxb202105001
|
[7] |
Lei Ruibo, Tian-Kunze X, Leppäranta M, et al. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982–2009[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 5470−5486. doi: 10.1002/2016JC011831
|
[8] |
Curry J A, Schramm J L, Ebert E E. Sea ice-albedo climate feedback mechanism[J]. Journal of Climate, 1995, 8(2): 240−247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
|
[9] |
Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 2018, 13(10): 103001. doi: 10.1088/1748-9326/aade56
|
[10] |
Stroeve J C, Crawford A D, Stammerjohn S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic[J]. Geophysical Research Letters, 2016, 43(12): 6332−6340. doi: 10.1002/2016GL069314
|
[11] |
Drobot S D, Anderson M R. An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D20): 24033−24049. doi: 10.1029/2000JD000171
|
[12] |
Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12024. doi: 10.1029/2009JC005436
|
[13] |
Anderson M R. Determination of a melt-onset date for Arctic sea-ice regions using passive-microwave data[J]. Annals of Glaciology, 1997, 25: 382−387. doi: 10.3189/S0260305500014324
|
[14] |
Bliss A C, Miller J A, Meier W N. Comparison of passive microwave-derived early melt onset records on Arctic sea ice[J]. Remote Sensing, 2017, 9(3): 199. doi: 10.3390/rs9030199
|
[15] |
朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2): 25−33.
Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multi-year variations of sea ice cover of Chukchi Sea in Arctic Ocean[J]. Haiyang Xuebao, 2007, 29(2): 25−33.
|
[16] |
马靖凯, 陶树豪, 杜凌, 等. 北极太平洋扇区海冰融冻期的年代际变化[J]. 气候变化研究快报, 2019, 8(3): 302−311. doi: 10.12677/CCRL.2019.83034
Ma Jingkai, Tao Shuhao, Du Ling, et al. Decadal variation of sea ice melting-frozen season in the Pacific sector of the Arctic[J]. Climate Change Research Letters, 2019, 8(3): 302−311. doi: 10.12677/CCRL.2019.83034
|
[17] |
Onarheim I H, Eldevik T, Smedsrud L H, et al. Seasonal and regional manifestation of Arctic sea ice loss[J]. Journal of Climate, 2018, 31(12): 4917−4932. doi: 10.1175/JCLI-D-17-0427.1
|
[18] |
Meier W N, Fetterer F, Savoie M, et al. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3[Z]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2019.
|
[19] |
Comiso J C, Nishio F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S07.
|
[20] |
Ogi M, Rigor I G, McPhee M G, et al. Summer retreat of Arctic sea ice: Role of summer winds[J]. Geophysical Research Letters, 2008, 35(24): L24701. doi: 10.1029/2008GL035672
|
[21] |
Bliss A C, Anderson M R. Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012[J]. The Cryosphere, 2014, 8(6): 2089−2100. doi: 10.5194/tc-8-2089-2014
|
[22] |
Bliss A C, Anderson M R. Daily area of snow melt onset on Arctic sea ice from passive microwave satellite observations 1979–2012[J]. Remote Sensing, 2014, 6(11): 11283−11314. doi: 10.3390/rs61111283
|
[23] |
Steele M, Bliss A C, Peng G, et al. Arctic Sea Ice Seasonal Change and Melt/Freeze Climate Indicators from Satellite Data, Version 1[Z]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2018.
|
[24] |
El Naggar S, Garrity C, Ramseier R O. The modelling of sea ice melt-water ponds for the high Arctic using an airborne line scan camera, and applied to the Satellite Special Sensor Microwave/Imager (SSM/I)[J]. International Journal of Remote Sensing, 1998, 19(12): 2373−2394. doi: 10.1080/014311698214785
|
[25] |
Maksym T. Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes[J]. Annual Review of Marine Science, 2019, 11: 187−213. doi: 10.1146/annurev-marine-010816-060610
|
[26] |
朱大勇, 赵进平, 史久新. 2003年与1999年楚科奇海海冰的差异及其发生原因[J]. 极地研究, 2005, 17(1): 11−22.
Zhu Dayong, Zhao Jinping, Shi Jiuxin. Differences of sea ice distribution in Chukchi Sea and their dynamic mechanism in 1999 and 2003[J]. Chinese Journal of Polar Research, 2005, 17(1): 11−22.
|
[27] |
Kapsch M L, Skific N, Graversen R G, et al. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns[J]. Climate Dynamics, 2019, 52(3): 2497−2512.
|