Citation: | Yin Hao,Su Jie,Cheng Bin. The effect of snow density evolution on modelled snow depth in the Arctic[J]. Haiyang Xuebao,2021, 43(7):75–89 doi: 10.12284/hyxb2021143 |
[1] |
Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958−2008[J]. Geophysical Research Letters, 2009, 36(15): L15501.
|
[2] |
Maslanik J, Stroeve J, Fowler C, et al. Distribution and trends in Arctic sea ice age through spring 2011[J]. Geophysical Research Letters, 2011, 38(13): L13502.
|
[3] |
Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12024. doi: 10.1029/2009JC005436
|
[4] |
Bliss A C, Anderson M R. Arctic sea ice melt onset timing from passive microwave-based and surface air temperature-based methods[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9063−9080. doi: 10.1029/2018JD028676
|
[5] |
Webster M A, Rigor I G, Nghiem S V, et al. Interdecadal changes in snow depth on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 119(8): 5395−5406.
|
[6] |
Simmonds I, Burke C, Keay K. Arctic climate change as manifest in cyclone behavior[J]. Journal of Climate, 2008, 21(22): 5777−5796. doi: 10.1175/2008JCLI2366.1
|
[7] |
Boisvert L N, Webster M A, Petty A A, et al. Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas from reanalyses[J]. Journal of Climate, 2018, 31(20): 8441−8462. doi: 10.1175/JCLI-D-18-0125.1
|
[8] |
Webster M, Gerland S, Holland M, et al. Snow in the changing sea-ice systems[J]. Nature Climate Change, 2018, 8(11): 946−953. doi: 10.1038/s41558-018-0286-7
|
[9] |
Merkouriadi I, Cheng B, Hudson S R, et al. Effect of frequent winter warming events (storms) and snow on sea-ice growth—a case from the Atlantic sector of the Arctic Ocean during the N-ICE2015 campaign[J]. Annals of Glaciology, 2020, 61(82): 164−170. doi: 10.1017/aog.2020.25
|
[10] |
Leppäranta M. A growth model for black ice, snow ice and snow thickness in subarctic basins[J]. Hydrology Research, 1983, 14(2): 59−70. doi: 10.2166/nh.1983.0006
|
[11] |
Cheng Bin, Launianen J, Vihma T. Modelling of superimposed ice formation and subsurface melting in the Baltic sea[J]. Geophysica, 2003, 39(1): 31−50.
|
[12] |
Wang Caixin, Cheng Bin, Wang Keguang, et al. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard[J]. Polar Research, 2015, 34(1): 20828. doi: 10.3402/polar.v34.20828
|
[13] |
Merkouriadi I, Cheng Bin, Graham R M, et al. Critical role of snow on sea ice growth in the Atlantic sector of the Arctic Ocean[J]. Geophysical Research Letters, 2017, 44(20): 10479−10485. doi: 10.1002/2017GL075494
|
[14] |
Merkouriadi I, Liston G E, Graham R M, et al. Quantifying the potential for snow-ice formation in the Arctic Ocean[J]. Geophysical Research Letters, 2020, 47(4): e2019GL085020.
|
[15] |
Granskog M A, Rösel A, Dodd P A, et al. Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 2539−2549. doi: 10.1002/2016JC012398
|
[16] |
Ledley T S. Snow on sea ice: Competing effects in shaping climate[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D9): 17195−17208. doi: 10.1029/91JD01439
|
[17] |
Shapiro L H, Johnson J B, Sturm M, et al. Snow mechanics: Review of the state of knowledge and applications[R]. US Army Cold Regions: Research and Engineering Laboratory, 1997.
|
[18] |
Anderson E A. A point energy and mass balance model of a snow cover[R]. Washington: US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Hydrology, 1976.
|
[19] |
Brun E, Martin Ε, Simon V, et al. An energy and mass model of snow cover suitable for operational avalanche forecasting[J]. Journal of Glaciology, 1989, 35(121): 333−342. doi: 10.1017/S0022143000009254
|
[20] |
Lehning M, Bartelt P, Brown B, et al. Snowpack model calculations for avalanche warning based upon a new network of weather and snow stations[J]. Cold Regions Science and Technology, 1999, 30(1/3): 145−157.
|
[21] |
Boone A. Description du schema de neige ISBA-ES (Explicit Snow)[Z/OL]. [2021−03−25]. http://www.umr-cnrm.fr/IMG/pdf/snowdoc_v2.pdf.
|
[22] |
Huintjes E, Sauter T, Schröter B, et al. Evaluation of a coupled snow and energy balance model for Zhadang Glacier, Tibetan Plateau, using glaciological measurements and time-lapse photography[J]. Arctic Antarctic & Alpine Research, 2015, 47(3): 573−590.
|
[23] |
Sauter T, Arndt A, Schneider C. COSIPY v1.3-an open-source coupled snowpack and ice surface energy and mass balance model[J]. Geoscientific Model Development, 2020, 13(11): 5645−5662. doi: 10.5194/gmd-13-5645-2020
|
[24] |
Liston G E, Itkin P, Stroeve J, et al. A Lagrangian snow-evolution system for sea-ice applications (SnowModel-LG): Part I-model description[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2019JC015913.
|
[25] |
Launiainen J, Cheng Bin. Modelling of ice thermodynamics in natural water bodies[J]. Cold Regions Science and Technology, 1998, 27(3): 153−178. doi: 10.1016/S0165-232X(98)00009-3
|
[26] |
Saloranta T M. Modeling the evolution of snow, snow ice and ice in the Baltic Sea[J]. Tellus A: Dynamic Meteorology and Oceanography, 2010, 52(1): 93−108.
|
[27] |
Cheng Bin, Zhang Zhanhai, Vihma T, et al. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09020.
|
[28] |
Huwald H, Tremblay L B, Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05009.
|
[29] |
Zhao Jiechen, Cheng Bin, Vihma T, et al. Observation and thermodynamic modeling of the influence of snow cover on landfast sea ice thickness in Prydz Bay, East Antarctica[J]. Cold Regions Science and Technology, 2019, 168: 102869. doi: 10.1016/j.coldregions.2019.102869
|
[30] |
Richter-Menge J A, Perovich D K, Elder B C, et al. Ice mass-balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover[J]. Annals of Glaciology, 2006, 44: 205−210. doi: 10.3189/172756406781811727
|
[31] |
Polashenski C, Perovich D, Richter-Menge J, et al. Seasonal ice mass-balance buoys: Adapting tools to the changing Arctic[J]. Annals of Glaciology, 2011, 52(57): 18−26. doi: 10.3189/172756411795931516
|
[32] |
Lei Ruibo, Li Na, Heil P, et al. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2014, 119(1): 537−547.
|
[33] |
Nicolaus M, Hoppmann M, Arndt S, et al. Snow depth and air temperature seasonality on sea ice derived from snow buoy measurements[J]. Frontiers in Marine Science, 2021, 8: 655446. doi: 10.3389/fmars.2021.655446
|
[34] |
Warren S G, Rigor I G, Untersteiner N, et al. Snow depth on Arctic sea ice[J]. Journal of Climate, 1999, 12(6): 1814−1829. doi: 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
|
[35] |
Cheng Bin, Mäkynen M, Similä M, et al. Modelling snow and ice thickness in the coastal Kara Sea, Russian Arctic[J]. Annals of Glaciology, 2013, 54(62): 105−113. doi: 10.3189/2013AoG62A180
|
[36] |
Li Shutong, Dou Tingfeng, Xiao Cunde. A preliminary investigation of Arctic sea ice negative freeboard from in-situ observations and radar altimetry[J]. Journal of Ocean University of China, 2021, 20(2): 307−314. doi: 10.1007/s11802-021-4380-5
|
[37] |
Maksym T, Jeffries M O. A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice[J]. Journal of Geophysical Research: Oceans, 2000, 105(C11): 26313−26331. doi: 10.1029/2000JC900130
|
[38] |
Cheng Bin, Vihma T, Rontu L, et al. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland[J]. Tellus A: Dynamic Meteorology and Oceanography, 2014, 66(1): 21564. doi: 10.3402/tellusa.v66.21564
|
[39] |
Liston G E, Sturm M. A snow-transport model for complex terrain[J]. Journal of Glaciology, 1998, 44(148): 498−516. doi: 10.1017/S0022143000002021
|
[40] |
Liston G E, Haehnel R B, Sturm M, et al. Simulating complex snow distributions in windy environments using SnowTran-3D[J]. Journal of Glaciology, 2007, 53(181): 241−256. doi: 10.3189/172756507782202865
|
[41] |
Aleksandrov Y I, Bryazgin N N, Førland E J, et al. Seasonal, interannual and long-term variability of precipitation and snow depth in the region of the Barents and Kara seas[J]. Polar Research, 2005, 24(1/2): 69−85.
|
[42] |
Rösel A, Itkin P, King J, et al. Thin sea ice, thick snow, and widespread negative freeboard observed during N-ICE2015 north of svalbard[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1156−1176. doi: 10.1002/2017JC012865
|