Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Ou Liguo,Wang Bingyan,Liu Bilin, et al. Automatic measurement of morphological indexes of three Thunnus species based on computer vision[J]. Haiyang Xuebao,2021, 43(11):105–115 doi: 10.12284/hyxb2021140
Citation: Ou Liguo,Wang Bingyan,Liu Bilin, et al. Automatic measurement of morphological indexes of three Thunnus species based on computer vision[J]. Haiyang Xuebao,2021, 43(11):105–115 doi: 10.12284/hyxb2021140

Automatic measurement of morphological indexes of three Thunnus species based on computer vision

doi: 10.12284/hyxb2021140
  • Received Date: 2021-03-12
  • Rev Recd Date: 2021-06-17
  • Available Online: 2021-06-22
  • Publish Date: 2021-12-31
  • Tuna is an important fishing target in China’s pelagic fishery. Its morphological indexes are of great significance for the study of the growth, development and life history of tunas. Manual measurement of morphological index is a very tedious and inefficient measurement method, while computer vision is an efficient and objective automatic measurement method. Therefore, in this paper, images of three Thunnus species are preprocessed by the computer vision library (OpenCV). It mainly uses image processing techniques such as bilateral filter, gray transformation, image binarization and contour extraction to obtain the contour image of tuna. According to the pre-selected feature points, the computer vision technology is used to traversal all the pixel points on the contour image, and 17 pre-selected feature points of each contour image are automatically located. By using the computer vision technology, the pixel length of the morphological index of the three species of tuna is automatically measured and the actual length of the morphological index is calculated. The absolute error and relative error between automatic measurement and manual measurement are compared and analyzed. The results show that the computer vision technique is effective in the automatic measurement of the morphological indexes of the three Thunnus species. The absolute error ranges of 12 morphological indices of Thunnus obesus, Thunnus albacores and Thunnus alalunga are 0.00−1.46 cm, 0−1.73 cm and 0−1.32 cm, respectively, and the relative error ranges are 0.01%−5.84%, 0%−6.17% and 0%−6.89%, respectively. It is expected to provide a basis for intelligent identification of tuna and a basic reference for automatic measurement of other fish.
  • loading
  • [1]
    崔雍浩, 商聪, 陈锶奇, 等. 人工智能综述: AI的发展[J]. 无线电通信技术, 2019, 45(3): 225−231. doi: 10.3969/j.issn.1003-3114.2019.03.01

    Cui Yonghao, Shang Cong, Chen Siqi, et al. Overview of AI: developments of AI techniques[J]. Radio Communications Technology, 2019, 45(3): 225−231. doi: 10.3969/j.issn.1003-3114.2019.03.01
    [2]
    Fernandesa A F A, Turrab E M, de Alvarengab É R, et al. Deep learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia[J]. Computers and Electronics in Agriculture, 2020, 170: 105274. doi: 10.1016/j.compag.2020.105274
    [3]
    Islamadina R, Pramita N, Arnia F, et al. Estimating fish weight based on visual captured[C]//2018 International Conference on Information and Communications Technology (ICOIACT). Yogyakarta, Indonesia: IEEE, 2018.
    [4]
    Spampinato C, Chen-Burger Y H, Nadarajan G, et al. Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos[C]// VISAPP 2008: Proceedings of the Third International Conference on Computer Vision Theory and Applications, Portugal: VISAPP, 2008.
    [5]
    Rathi D, Jain S, Indu S. Underwater fish species classification using convolutional neural network and deep learning[C]//2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR). Bangalore, India: IEEE, 2017: 1−6.
    [6]
    Li Lian, Hong Jinqi. Identification of fish species based on image processing and statistical analysis research[C]//2014 IEEE International Conference on Mechatronics and Automation. Tianjin, China: IEEE, 2014: 1155−1160.
    [7]
    Malik S, Kumar T, Sahoo A K. Image processing techniques for identification of fish disease[C]//2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP). Singapore: IEEE, 2017: 55−59.
    [8]
    欧利国, 刘必林. 南海东沙群岛海域圆鲹属鱼类矢耳石的形态特征分析[J]. 南方水产科学, 2019, 15(3): 33−40. doi: 10.12131/20180248

    Ou Liguo, Liu Bilin. Sagittae morphology of genus Decapterus from Dongsha Islands in South China Sea[J]. South China Fisheries Science, 2019, 15(3): 33−40. doi: 10.12131/20180248
    [9]
    胡祝华, 曹路, 张逸然, 等. 基于计算机视觉的卵形鲳鲹眼部特征检测方法研究[J]. 渔业现代化, 2017, 44(4): 15−23. doi: 10.3969/j.issn.1007-9580.2017.04.003

    Hu Zhuhua, Cao Lu, Zhang Yiran, et al. Study on eye feature detection method of Trachinotus ovatus based on computer vision[J]. Fishery Modernization, 2017, 44(4): 15−23. doi: 10.3969/j.issn.1007-9580.2017.04.003
    [10]
    Hsieh C L, Chang H Y, Chen F H, et al. A simple and effective digital imaging approach for tuna fish length measurement compatible with fishing operations[J]. Computers and Electronics in Agriculture, 2011, 75(1): 44−51. doi: 10.1016/j.compag.2010.09.009
    [11]
    Balaban M O, Ünal Şengör G F, Soriano M G, et al. Using image analysis to predict the weight of Alaskan salmon of different species[J]. Journal of Food Science, 2010, 75(3): E157−E162. doi: 10.1111/j.1750-3841.2010.01522.x
    [12]
    Strachan N J C. Length measurement of fish by computer vision[J]. Computers and Electronics in Agriculture, 1993, 8(2): 93−104. doi: 10.1016/0168-1699(93)90009-P
    [13]
    Han J, Honda N, Asada A, et al. Automated acoustic method for counting and sizing farmed fish during transfer using DIDSON[J]. Fisheries Science, 2009, 75(6): 1359−1367. doi: 10.1007/s12562-009-0162-5
    [14]
    陈新军, 冯波, 许柳雄. 印度洋大眼金枪鱼栖息地指数研究及其比较[J]. 中国水产科学, 2008, 15(2): 269−278. doi: 10.3321/j.issn:1005-8737.2008.02.011

    Chen Xinjun, Feng Bo, Xu Liuxiong. A comparative study on habitat suitability index of bigeye tuna, Thunnus obesus in the Indian Ocean[J]. Journal of Fishery Sciences of China, 2008, 15(2): 269−278. doi: 10.3321/j.issn:1005-8737.2008.02.011
    [15]
    王锡昌, 刘燕, 刘源. 大目金枪鱼块温盐水−冷藏库组合解冻工艺的优化[J]. 农业工程学报, 2010, 26(7): 358−363. doi: 10.3969/j.issn.1002-6819.2010.07.063

    Wang Xichang, Liu Yan, Liu Yuan. Optimization of salt water-cold storage combined thawing technology of big-eye tuna chunk[J]. Transactions of the CSAE, 2010, 26(7): 358−363. doi: 10.3969/j.issn.1002-6819.2010.07.063
    [16]
    陈新军, 许柳雄, 宋利明, 等. 大西洋海域大眼金枪鱼年龄与生长的初步研究[J]. 海洋渔业, 2006, 28(1): 20−24. doi: 10.3969/j.issn.1004-2490.2006.01.004

    Chen Xinjun, Xu Liuxiong, Song Liming, et al. Age and growth of bigeye tuna (Thunnus alalunga) in the Atlantic Ocean[J]. Marine Fisheries, 2006, 28(1): 20−24. doi: 10.3969/j.issn.1004-2490.2006.01.004
    [17]
    Muñoz-Benavent P, Andreu-García G, Valiente-González J M, et al. Automatic Bluefin Tuna sizing using a stereoscopic vision system[J]. ICES Journal of Marine Science, 2018, 75(1): 390−401. doi: 10.1093/icesjms/fsx151
    [18]
    梁广顺, 汪日伟, 温显斌. 基于双边滤波与非局部均值的图像去噪研究[J]. 光电子·激光, 2015, 26(11): 2231−2235.

    Liang Guangshun, Wang Riwei, Wen Xianbin. Image denoising based on bilateral filtering and non-local means[J]. Journal of Optoelectronics·Laser, 2015, 26(11): 2231−2235.
    [19]
    李晓莎, 林森. 基于Python+OpenCV的车牌识别技术的研究[J]. 数字技术与应用, 2019, 37(6): 95−97.

    Li Xiaosha, Lin Sen. Research on license plate recognition technology based on Python+OpenCV[J]. Digital Technology and Application, 2019, 37(6): 95−97.
    [20]
    赵世峰, 何皙健. 基于OpenCV的复杂环境下图像二值化方法[J]. 电子测量技术, 2018, 41(6): 55−59.

    Zhao Shifeng, He Xijian. Binarization method for images acquired under complex environment based on OpenCV[J]. Electronic Measurement Technology, 2018, 41(6): 55−59.
    [21]
    度国旭. OPENCV轮廓识别研究与实践[J]. 装备制造技术, 2020(1): 101−103, 131. doi: 10.3969/j.issn.1672-545X.2020.01.026

    Duo Guoxu. Research and practice of OpenCV contour recognition[J]. Equipment Manufacturing Technology, 2020(1): 101−103, 131. doi: 10.3969/j.issn.1672-545X.2020.01.026
    [22]
    Tičina V, Grubišić L, Šegvić Bubić T, et al. Biometric characteristics of small Atlantic bluefin tuna (Thunnus thynnus, Linnaeus, 1758) of Mediterranean Sea origin[J]. Journal of Applied Ichthyology, 2011, 27(4): 971−976. doi: 10.1111/j.1439-0426.2011.01752.x
    [23]
    Hajjej G, Hattour A, Hajjej A, et al. Biometry, length-length and length-weight relationships of little tuna Euthynnus alletteratus in the Tunisian waters[J]. Journal of Fisheries and Aquatic Science, 2011, 6(3): 256−263. doi: 10.3923/jfas.2011.256.263
    [24]
    桂弢. 点到直线距离公式的研究性学习成果[J]. 数学通报, 2018, 57(1): 47−49, 56. doi: 10.3969/j.issn.0583-1458.2018.01.010

    Gui Tao. The research learning result of point-to-line distance formula[J]. Journal of Mathematics (China), 2018, 57(1): 47−49, 56. doi: 10.3969/j.issn.0583-1458.2018.01.010
    [25]
    余心杰, 吴雄飞, 王建平, 等. 基于机器视觉的大黄鱼形态参数快速检测方法[J]. 集成技术, 2014, 3(5): 45−51.

    Yu Xinjie, Wu Xiongfei, Wang Jianping, et al. Rapid detecting method for Pseudosciaena crocea Morphological parameters based on the machine vision[J]. Journal of Integration Technology, 2014, 3(5): 45−51.
    [26]
    靳明, 宋建中. 一种自适应的图像双边滤波方法[J]. 光电工程, 2004, 31(7): 65−68, 72.

    Jin Ming, Song Jianzhong. An adaptive bilateral filtering method for image processing[J]. Opto-Electronic Engineering, 2004, 31(7): 65−68, 72.
    [27]
    余章明, 张元, 廉飞宇, 等. 数字图像增强中灰度变换方法研究[J]. 电子质量, 2009(6): 18−20. doi: 10.3969/j.issn.1003-0107.2009.06.008

    Yu Zhangming, Zhang Yuan, Lian Feiyu, et al. A research of gray-scale transformation based on digital image enhancement[J]. Electronics Quality, 2009(6): 18−20. doi: 10.3969/j.issn.1003-0107.2009.06.008
    [28]
    王茜蒨, 彭中, 刘莉. 一种基于自适应阈值的图像分割算法[J]. 北京理工大学学报, 2003, 23(4): 521−524. doi: 10.3969/j.issn.1001-0645.2003.04.030

    Wang Qianqian, Peng Zhong, Liu Li. An adaptive method of image segmentation[J]. Transaction of Beijing Institute of Technology, 2003, 23(4): 521−524. doi: 10.3969/j.issn.1001-0645.2003.04.030
    [29]
    戴小杰, 许柳雄, 朱江峰, 等. 世界金枪鱼渔业渔获物物种原色图鉴[M]. 北京: 海洋出版社, 2007: 1-266.

    Dai Xiaojie, Xu Liuxiong, Zhu Jiangfeng, et al. An Illustrated Book of Primary Colors of World Tuna Fishery Catch Species[M]. Beijing: China Ocean Press, 2007: 1−266.
    [30]
    王奕文, 罗戎蕾, 康宇哲. 基于卷积神经网络的汉服关键尺寸自动测量[J]. 纺织学报, 2020, 41(12): 124−129.

    Wang Yiwen, Luo Ronglei, Kang Yuzhe. Automatic measurement of key dimensions for Han-style costumes based on use of convolutional neural network[J]. Journal of Textile Research, 2020, 41(12): 124−129.
    [31]
    杨杰超, 许江淳, 陆万荣, 等. 基于计算机视觉的大黄鱼体尺测算与体质量估测[J]. 中国农机化学报, 2018, 39(6): 66−70.

    Yang Jiechao, Xu Jiangchun, Lu Wanrong, et al. Computer vision-based body size measurement and weight estimation of large yellow croaker[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(6): 66−70.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views (489) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return