Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Zhou Zaiming,Chen Benqing,Xu Ran, et al. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve[J]. Haiyang Xuebao,2021, 43(9):137–145 doi: 10.12284/hyxb2021136
Citation: Zhou Zaiming,Chen Benqing,Xu Ran, et al. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve[J]. Haiyang Xuebao,2021, 43(9):137–145 doi: 10.12284/hyxb2021136

Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve

doi: 10.12284/hyxb2021136
  • Received Date: 2020-12-08
  • Rev Recd Date: 2021-05-06
  • Available Online: 2021-06-17
  • Publish Date: 2021-09-25
  • The composition and distribution of mangrove species are crucial to the protection and restoration of mangrove wetland ecosystems. In this study, mangrove species distribution was identified by unmanned aerial vehicle (UAV) hyperspectral images from Zhangjiangkou mangrove national nature reserve. Spectral characteristics, spectral differential, and spectral continuum removal were analyzed, 17 spectral parameters of 911 group spectral data from different vegetation species were obtained. Furthermore, 13 parameters for decision tree construction were selected by stepwise discriminant analysis. As a result, an accurate distribution map of mangrove species in the study area was obtained through C5.0 decision tree classification model. The vegetation species present different distribution types from top to bottom in the Zhangjiangkou mangrove national nature reserve. The upper part of the study area was dominated by the mixed type of Aegiceras corniculatum and Kandelia obovata. The middle area showed symbiosis status of three different mangrove species Avicennia marina, Aegiceras corniculatum and Kandelia obovata. The lower part of the study area was dominated by Avicennia marina, and a small amount of Kandelia obovata. Through the confusion matrix, the overall classification accuracy is 87.95% and the Kappa coefficient is 83.81%, showed a satisfactory precision. Therefore, our mangrove species identification results from UAV hyperspectral images could be used as a reference for ecological protection of regional mangrove wetland, and also as a identification method reference for mangrove species.
  • loading
  • [1]
    王乐, 时晨, 田金炎, 等. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838−849. doi: 10.17520/biods.2018067

    Wang Le, Shi Chen, Tian Jinyan, et al. Researches on mangrove forest monitoring methods based on multi-source remote sensing[J]. Biodiversity Science, 2018, 26(8): 838−849. doi: 10.17520/biods.2018067
    [2]
    林鹏. 中国红树林湿地与生态工程的几个问题[J]. 中国工程科学, 2003, 5(6): 33−38. doi: 10.3969/j.issn.1009-1742.2003.06.005

    Lin Peng. The characteristics of mangrove wetlands and some ecological engineering questions in China[J]. Engineering Science, 2003, 5(6): 33−38. doi: 10.3969/j.issn.1009-1742.2003.06.005
    [3]
    Seto K C, Fragkias M. Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar Convention on Wetlands[J]. Global Environmental Change, 2007, 17(3/4): 486−500.
    [4]
    Jia Mingming, Zhang Yuanzhi, Wang Zongming, et al. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 33: 226−231. doi: 10.1016/j.jag.2014.06.006
    [5]
    Jia Mingming, Wang Zongming, Zhang Yuanzhi, et al. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 535−545. doi: 10.1016/j.jag.2018.07.025
    [6]
    Ciri C, Ochieng E, Tieszen L L, et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 2011, 20(1): 154−159. doi: 10.1111/j.1466-8238.2010.00584.x
    [7]
    Wang Le, Jia Mingming, Yin Dameng, et al. A review of remote sensing for mangrove forests: 1956−2018[J]. Remote Sensing of Environment, 2019, 231: 111223. doi: 10.1016/j.rse.2019.111223
    [8]
    Zhu Yuanhui, Liu Kai, Liu Lin, et al. Retrieval of mangrove aboveground biomass at the individual species level with worldview-2 images[J]. Remote Sensing, 2015, 7(9): 12192−12214. doi: 10.3390/rs70912192
    [9]
    Wang L, Sousa W P, Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004, 25(24): 5655−5668. doi: 10.1080/014311602331291215
    [10]
    Everitt J H, Yang C, Sriharan S, et al. Using high resolution satellite imagery to map black mangrove on the Texas gulf coast[J]. Journal of Coastal Research, 2008, 2008(246): 1582−1586.
    [11]
    Hauser L T, Vu G N, Nguyen B A, et al. Uncovering the spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula, Vietnam using multi-temporal SPOT satellite imagery (2004−2013)[J]. Applied Geography, 2017, 86: 197−207. doi: 10.1016/j.apgeog.2017.06.019
    [12]
    Xia Qing, Qin Chengzhi, Li He, et al. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data[J]. Ecological Indicators, 2020, 113: 106196. doi: 10.1016/j.ecolind.2020.106196
    [13]
    赵春晖, 王立国, 齐滨. 高光谱遥感图像处理方法及应用[M]. 北京: 电子工业出版社, 2016.

    Zhao Chunhui, Wang Liguo, Qi Bin. Hyperspectral Remote Sensing Images Processing Methods and Applications[M]. Beijing: Publishing House of Electronics Industry, 2016.
    [14]
    Kumar T, Panigrahy S, Kumar P, et al. Classification of floristic composition of mangrove forests using, hyperspectral data: case study of bhitarkanika national park, India[J]. Journal of Coastal Conservation, 2013, 17(1): 121−132. doi: 10.1007/s11852-012-0223-2
    [15]
    Wan Luoma, Lin Yinyi, Zhang Hongsheng, et al. GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong[J]. Remote Sensing, 2020, 12(4): 656. doi: 10.3390/rs12040656
    [16]
    Hati J P, Samanta S, Chaube N R, et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data[J]. The Egyptian Journal of Remote Sensing and Space Science, 2021, 24(2): 273−281. doi: 10.1016/j.ejrs.2020.10.002
    [17]
    刘凯, 龚辉, 曹晶晶, 等. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492−501.

    Liu Kai, Gong Hui, Cao Jingjing, et al. Comparison of mangrove remote sensing classification based on multi-type UAV data[J]. Tropical Geography, 2019, 39(4): 492−501.
    [18]
    Cao Jingjing, Leng Wanchun, Liu Kai, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing, 2018, 10(1): 89. doi: 10.3390/rs10010089
    [19]
    周振超, 李贺, 黄翀, 等. 红树林遥感动态监测研究进展[J]. 地球信息科学学报, 2018, 20(11): 1631−1643. doi: 10.12082/dqxxkx.2018.180247

    Zhou Zhenchao, Li He, Huang Chong, et al. Review on dynamic monitoring of mangrove forestry using remote sensing[J]. Journal of Geo-information Science, 2018, 20(11): 1631−1643. doi: 10.12082/dqxxkx.2018.180247
    [20]
    Yang Shanshan, Wang Le, Shi Chen, et al. Evaluating the relationship between the photochemical reflectance index and light use efficiency in a mangrove forest with Spartina alterniflora invasion[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 778−785. doi: 10.1016/j.jag.2018.08.014
    [21]
    黄冠闽. 漳江口红树林区互花米草的生长特性及其与秋茄的相对竞争力[D]. 厦门: 厦门大学, 2009.

    Huang Guanmin. The growth characteristics of Spartina alterniflora and relative competitive ability with Kandelia obovata in mangrove areas of Zhangjiang Estuary[D]. Xiamen: Xiamen University, 2009.
    [22]
    王美玲, 焦琳琳, 王晓红, 等. 曹妃甸湿地典型植被光谱特征差异性分析[J]. 浙江农业学报, 2019, 31(6): 963−969. doi: 10.3969/j.issn.1004-1524.2019.06.14

    Wang Meiling, Jiao Linlin, Wang Xiaohong, et al. Differences in spectral characteristics of typical vegetation in Caofeidian wetland[J]. Acta Agriculturae Zhejiangensis, 2019, 31(6): 963−969. doi: 10.3969/j.issn.1004-1524.2019.06.14
    [23]
    赵英时. 遥感应用分析原理与方法[M]. 2版. 北京: 科学出版社, 2013.

    Zhao Yingshi. Principles and Methods of Remote Sensing Application Analysis[M]. 2nd ed. Beijing: Science Press, 2013.
    [24]
    岁秀珍, 陈浩. 基于高光谱的湿地植被分类研究[J]. 测绘与空间地理信息, 2019, 42(5): 137−140, 144. doi: 10.3969/j.issn.1672-5867.2019.05.042

    Sui Xiuzhen, Chen Hao. Classification of wetland vegetation based on hyperspectral[J]. Geomatics & Spatial Information Technology, 2019, 42(5): 137−140, 144. doi: 10.3969/j.issn.1672-5867.2019.05.042
    [25]
    罗宁, 阮仁宗, 王俊海. 基于机器学习的高光谱湿地植被分类研究[J]. 林业调查规划, 2019, 44(3): 1−7. doi: 10.3969/j.issn.1671-3168.2019.03.001

    Luo Ning, Ruan Renzong, Wang Junhai. Classification of hyperspectral wetland vegetation based on machine learning[J]. Forest Inventory and Planning, 2019, 44(3): 1−7. doi: 10.3969/j.issn.1671-3168.2019.03.001
    [26]
    史冰全, 张晓丽, 白雪琪, 等. 基于“三边”参数的油松林叶绿素估算模型[J]. 东北林业大学学报, 2015, 43(5): 80−83. doi: 10.3969/j.issn.1000-5382.2015.05.016

    Shi Bingquan, Zhang Xiaoli, Bai Xueqi, et al. Chlorophyll estimation model of Pinus tabulaeformis based on “Sanbian” parameters[J]. Journal of Northeast Forestry University, 2015, 43(5): 80−83. doi: 10.3969/j.issn.1000-5382.2015.05.016
    [27]
    曾帅, 况润元, 肖阳, 等. 鄱阳湖湿地植物实测高光谱数据分类[J]. 遥感信息, 2017, 32(5): 75−81. doi: 10.3969/j.issn.1000-3177.2017.05.012

    Zeng Shuai, Kuang Runyuan, Xiao Yang, et al. Measured hyperspectral data classification of Poyang Lake wetland vegetation[J]. Remote Sensing Information, 2017, 32(5): 75−81. doi: 10.3969/j.issn.1000-3177.2017.05.012
    [28]
    庞毓雯, 黄雨馨, 问静怡, 等. 泥炭藓群落的光谱特征及遥感识别研究[J]. 植物科学学报, 2019, 37(2): 125−135. doi: 10.11913/PSJ.2095-0837.2019.20125

    Pang Yuwen, Huang Yuxin, Wen Jingyi, et al. Study on the spectral characteristics and remote sensing recognition of the Sphagnum community[J]. Plant Science Journal, 2019, 37(2): 125−135. doi: 10.11913/PSJ.2095-0837.2019.20125
    [29]
    王怀警, 谭炳香, 房秀凤, 等. C5.0决策树Hyperion影像森林类型精细分类方法[J]. 浙江农林大学学报, 2018, 35(4): 724−734. doi: 10.11833/j.issn.2095-0756.2018.04.018

    Wang Huaijing, Tan Bingxiang, Fang Xiufeng, et al. Precise classification of forest types use Hyperion image based on the C5.0 decision tree algorithm[J]. Journal of Zhejiang A&F University, 2018, 35(4): 724−734. doi: 10.11833/j.issn.2095-0756.2018.04.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views (425) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return