Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Jia Binhe,Li Wei,Liang Kangzhuang. Research on the optimization method of analytical four dimensional ensemble variational data assimilation[J]. Haiyang Xuebao,2021, 43(10):61–69 doi: 10.12284/hyxb2021129
Citation: Jia Binhe,Li Wei,Liang Kangzhuang. Research on the optimization method of analytical four dimensional ensemble variational data assimilation[J]. Haiyang Xuebao,2021, 43(10):61–69 doi: 10.12284/hyxb2021129

Research on the optimization method of analytical four dimensional ensemble variational data assimilation

doi: 10.12284/hyxb2021129
  • Received Date: 2020-05-11
  • Rev Recd Date: 2020-11-23
  • Available Online: 2021-06-16
  • Publish Date: 2021-10-30
  • The traditional four-dimensional variational data assimilation method can optimize the parameters of the numerical model while assimilating the observation data. However, the traditional four-dimensional variational method needs to compile special adjoint models for different numerical models, so the portability of the traditional four-dimensional variational method is poor and a lot of resources are consumed in the calculation. In this paper, a new parameter optimization method based on the analytic four-dimensional ensemble variation is proposed, which expands the perturbation and constructs the ensemble based on the model parameters obtained by iterative search, and then explicitly calculates the covariance matrix, and obtains the analytic solution of the minimum value of the cost function, so as to avoid the use of adjoint model. Using Lorenz-63 model, single-parameter and multi-parameter numerical tests and optimization effect tests were carried out on the analytic four-dimensional ensemble variation method, and in the case of different assimilation time window length and observation sampling interval, the traditional four-dimensional variational method was used to compare with the new method, the results show that the new method has the same optimization performance as the traditional four-dimensional variational method, and it can converge to the truth value effectively, and the new method does not need to calculate adjoint mode, so it has good portability. This paper also test the assimilation effect of the new method with different ensemble members and true values of model parameters, and the results show that the new method is insensitive to the number of ensemble members and the true values of model parameters, and the data assimilation can be completed with fewer ensemble members.
  • loading
  • [1]
    魏敏. 四维变分方法在微分方程参数优化中的应用[D]. 南京: 南京师范大学, 2013.

    Wei Min. Applications of the four-dimensional variation methods on parameter optimization of differential equations[D]. Nanjing: Nanjing Normal University, 2013.
    [2]
    Lewis J M, Derber J C. The use of adjoint equations to solve a variational adjustment problem with advective constraints[J]. Tellus A: Dynamic Meteorology and Oceanography, 1985, 37(4): 309−322. doi: 10.3402/tellusa.v37i4.11675
    [3]
    Le Dimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus A: Dynamic Meteorology and Oceanography, 1986, 38(2): 97−110. doi: 10.3402/tellusa.v38i2.11706
    [4]
    Chu Kekuan, Tan Zhemin, Ming Xue. Impact of 4DVAR assimilation of rainfall data on the simulation of mesoscale precipitation systems in a Mei-Yu heavy rainfall event[J]. Advances in Atmospheric Sciences, 2007, 24(2): 281−300. doi: 10.1007/s00376-007-0281-9
    [5]
    Zhao Juan, Wang Bin, Liu Juanjuan. Impact of analysis-time tuning on the performance of the DRP-4DVar approach[J]. Advances in Atmospheric Sciences, 2011, 28(1): 207−216. doi: 10.1007/s00376-010-9191-3
    [6]
    Wang Yunfeng, Wang Bin, Fei Jianfang, et al. The effects of assimilating satellite brightness temperature and bogus data on the simulation of typhoon Kalmaegi (2008)[J]. Acta Meteorologica Sinica, 2013, 27(3): 415−434. doi: 10.1007/s13351-013-0309-2
    [7]
    Zhong Jian, Huang Sixun, Fei Jianfang, et al. Application of tikhonov regularization method to wind retrieval from scatterometer data II: Cyclone wind retrieval with consideration of rain[J]. Chinese Physics B, 2011, 20(6): 064301. doi: 10.1088/1674-1056/20/6/064301
    [8]
    Inazu D, Higuchi T, Nakamura K. Optimization of boundary condition and physical parameter in an ocean tide model using an evolutionary algorithm[J]. Theoretical and Applied Mechanics Japan, 2010, 58: 101−112.
    [9]
    Wang Tingting, Li Wenlong, Chen Zhanghui, et al. Correcting the systematic error of the density functional theory calculation: The alternate combination approach of genetic algorithm and neural network[J]. Chinese Physics B, 2010, 19(7): 076401. doi: 10.1088/1674-1056/19/7/076401
    [10]
    王云峰, 顾成明, 张晓辉, 等. 优化模式物理参数的扩展四维变分同化方法[J]. 物理学报, 2014, 63(24): 12−19.

    Wang Yunfeng, Gu Chengming, Zhang Xiaohui, et al. Expanded four-dimensional variatiaonal data assimilation method to optimize model physical parameters[J]. Acta Physica Sinica, 2014, 63(24): 12−19.
    [11]
    Liu Chengsi, Xiao Qingnong, Wang Bin. An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test[J]. Monthly Weather Review, 2008, 136(9): 3363−3373. doi: 10.1175/2008MWR2312.1
    [12]
    Liu Chengsi, Xiao Qingnong, Wang Bin. An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with advanced research WRF (ARW)[J]. Monthly Weather Review, 2009, 137(5): 1687−1704. doi: 10.1175/2008MWR2699.1
    [13]
    Liu Chengsi, Xiao Qingnong. An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced research WRF using real data[J]. Monthly Weather Review, 2013, 141(8): 2721−2739. doi: 10.1175/MWR-D-12-00130.1
    [14]
    Arbogast É, Desroziers G, Berre L. A parallel implementation of a 4DEnVar ensemble[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(706): 2073−2083. doi: 10.1002/qj.3061
    [15]
    Yang Yin, Mémin E. High-resolution data assimilation through stochastic subgrid tensor and parameter estimation from 4DEnVar[J]. Tellus A: Dynamic Meteorology and Oceanography, 2017, 69(1): 1308772. doi: 10.1080/16000870.2017.1308772
    [16]
    Song H J, Kang J H. Effects of the wind-mass balance constraint on ensemble forecasts in the hybrid-4DEnVar[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(719): 434−449. doi: 10.1002/qj.3440
    [17]
    杨雨轩. 基于华南冬季暴雨的雷达资料四维集合变分同化技术研究[D]. 长沙: 国防科技大学, 2017.

    Yang Yuxuan. Technical research of four-dimensional ensemble variational assimilation of doppler radar data based on awinter heavy rainstorm in south China[D]. Changsha: National University of Defense Technology, 2017.
    [18]
    Lee K S, Bang S H, Chang K S. Feedback-assisted iterative learning control based on an inverse process model[J]. Journal of Process Control, 1994, 4(2): 77−89. doi: 10.1016/0959-1524(94)80026-X
    [19]
    杜川利, 黄向宇, 俞小鼎. 变分同化方法在Lorenz系统中的简单应用研究[J]. 气象, 2005, 31(2): 23−26. doi: 10.7519/j.issn.1000-0526.2005.02.005

    Du Chuanli, Huang Xiangyu, Yu Xiaoding. Simple application of variational four-dimensional assimilation in Lorenz system[J]. Meteorological Monthly, 2005, 31(2): 23−26. doi: 10.7519/j.issn.1000-0526.2005.02.005
    [20]
    Hall M C G. Application of adjoint sensitivity theory to an atmospheric general circulation model[J]. Journal of the Atmospheric Sciences, 1986, 43(22): 2644−2652. doi: 10.1175/1520-0469(1986)043<2644:AOASTT>2.0.CO;2
    [21]
    李建平, 丑纪范. 非线性大气动力学的进展[J]. 大气科学, 2003, 27(4): 653−673. doi: 10.3878/j.issn.1006-9895.2003.04.15

    Li Jianping, Chou Jifan. Advances in nonlinear atmospheric dynamics[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 653−673. doi: 10.3878/j.issn.1006-9895.2003.04.15
    [22]
    郜吉东, 丑纪范. 数值模式初值的敏感性程度对四维同化的影响——基于Lorenz系统的研究[J]. 气象学报, 1995, 53(4): 471−479.

    Gao Jidong, Chou Jifan. The effects of the model sensitivity to initial condition upon the variational four-diensional assimilation−the study based on Lorenz model[J]. Acta Meteorologica Sinica, 1995, 53(4): 471−479.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (668) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return