Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Chen Yuanrui,Zhao Dongliang,Lin Zikuan. Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface[J]. Haiyang Xuebao,2021, 43(9):8–20 doi: 10.12284/hyxb2021128
Citation: Chen Yuanrui,Zhao Dongliang,Lin Zikuan. Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface[J]. Haiyang Xuebao,2021, 43(9):8–20 doi: 10.12284/hyxb2021128

Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface

doi: 10.12284/hyxb2021128
  • Received Date: 2021-03-12
  • Rev Recd Date: 2021-04-19
  • Available Online: 2021-05-27
  • Publish Date: 2021-09-25
  • The CO2 flux at the sea-air interface, which is equal to the product of the gas transfer velocity, solubility, and the CO2 partial pressure difference between sea and the atmosphere, is estimated using the bulk equation, where the gas transfer velocity is usually associated with the wind speed. Different authors have proposed different parameterization schemes, in which the gas transfer velocity is a polynomial of different powers of the wind speed. In this paper, we summarize the main findings on the gas transfer velocity as a function of wind speed. We discover that the observation method has a greater influence on the gas transfer velocity than the power of the wind speed polynomial. On this basis, this paper calculates the global CO2 flux from 1982−2018 using several different parametric formulas for the gas exchange rate. The ocean is a sink for atmospheric CO2, the equatorial sea area is a source, and the ocean near 40° in the northern and southern hemispheres forms a strong absorption zone along the latitudinal direction. The annual average value of oceanic CO2 absorption (in terms of carbon) over 1982−2018 is (−1.53±0.15)Pg/a. The oceanic absorption decreases year by year until 1999, reaching a minimum in 1999, after which the oceanic absorption begins to increase, with the increase in oceanic absorption occurring mainly in the Southern Ocean.
  • loading
  • [1]
    闫俊岳, 刘久萌, 蒋国荣, 等. 南海海–气通量交换研究进展[J]. 地球科学进展, 2007, 22(7): 685−697.

    Yan Junyue, Liu Jiumeng, Jiang Guorong, et al. Advances in the study of air-sea flux exchange over the South China Sea[J]. Advances in Earth Science, 2007, 22(7): 685−697.
    [2]
    Boutin J, Quilfen Y, Merlivat L, et al. Global average of air-sea CO2 transfer velocity from QuikSCAT scatterometer wind speeds[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04007.
    [3]
    Takahashi T, Sutherland S C, Sweeney C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1601−1622.
    [4]
    Watson A J, Upstill-Goddard R C, Liss P S. Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique[J]. Nature, 1991, 349(6305): 145−147. doi: 10.1038/349145a0
    [5]
    Wanninkhof R, Asher W, Weppernig R, et al. Gas transfer experiment on Georges Bank using two volatile deliberate tracers[J]. Journal of Geophysical Research: Oceans, 1993, 98(C11): 20237−20248. doi: 10.1029/93JC01844
    [6]
    Jähne B, Libner P, Fischer R, et al. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J]. Tellus B, 1989, 41(2): 177−195. doi: 10.3402/tellusb.v41i2.15068
    [7]
    Haußecker H, Reinelt S, Jähne B. Heat as a Proxy Tracer for Gas Exchange Measurements in the Field: Principles and Technical Realization[M]//Jähne B, Monahan E C. Air-Water Gas Transfer. Heidelberg, Germany: AEON, 1995: 405−413.
    [8]
    Wanninkhof R, Asher W E, Ho D T, et al. Advances in quantifying air-sea gas exchange and environmental forcing[J]. Annual Review of Marine Science, 2009, 1: 213−244. doi: 10.1146/annurev.marine.010908.163742
    [9]
    Schimpf U, Garbe C, Jähne B. Investigation of transport processes across the sea surface microlayer by infrared imagery[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08S13.
    [10]
    Jones E P, Smith S D. A first measurement of sea-air CO2 flux by eddy correlation[J]. Journal of Geophysical Research, 1977, 82(37): 5990−5992. doi: 10.1029/JC082i037p05990
    [11]
    Broecker W S, Ledwell J R, Takahashi T, et al. Isotopic versus micrometeorologic ocean CO2 fluxes: a serious conflict[J]. Journal of Geophysical Research: Oceans, 1986, 91(C9): 10517−10527. doi: 10.1029/JC091iC09p10517
    [12]
    Pedreros R, Dardier G, Dupuis H, et al. Momentum and heat fluxes via the eddy correlation method on the R/V LAtalante and an ASIS buoy[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3339. doi: 10.1029/2002JC001449
    [13]
    Edson J B, Hinton A A, Prada K E, et al. Direct covariance flux estimates from mobile platforms at sea[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 547−562. doi: 10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2
    [14]
    Landwehr S, O’Sullivan N, Ward B. Direct flux measurements from mobile platforms at sea: motion and airflow distortion corrections revisited[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(6): 1163−1178. doi: 10.1175/JTECH-D-14-00137.1
    [15]
    Landwehr S, Miller S D, Smith M J, et al. Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity[J]. Atmospheric Chemistry and Physics, 2018, 18(6): 4297−4315. doi: 10.5194/acp-18-4297-2018
    [16]
    Edson J B, Hinton A A, Prada K E, et al. Direct covariance flux estimates from mobile platforms at sea[J]. Journal of Atmospheric & Oceanic Technology, 1998, 15(2): 547−562.
    [17]
    Miller S D, Marandino C, Saltzman E S. Ship-based measurement of air-sea CO2 exchange by eddy covariance[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): D02304.
    [18]
    Liss P S, Merlivat L. Air-sea gas exchange rates: introduction and synthesis[M]//The Role of Air-Sea Exchange in Geochemical Cycling. Dordrecht: Springer, 1986: 113−127.
    [19]
    Nightingale P D, Malin G, Law C S, et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeochemical Cycles, 2000, 14(1): 373−387. doi: 10.1029/1999GB900091
    [20]
    Ho D T, Law C S, Smith M J, et al. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations[J]. Geophysical Research Letters, 2006, 33(16): L16611. doi: 10.1029/2006GL026817
    [21]
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373−7382. doi: 10.1029/92JC00188
    [22]
    Nightingale P D, Liss P S, Schlosser P. Measurements of air-sea gas transfer during an open ocean algal bloom[J]. Geophysical Research Letters, 2000, 27(14): 2117−2120. doi: 10.1029/2000GL011541
    [23]
    Sweeney C, Gloor E, Jacobson A R, et al. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements[J]. Global Biogeochemical Cycles, 2007, 21(2): GB2015.
    [24]
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351−362. doi: 10.4319/lom.2014.12.351
    [25]
    Jacobs C M, Kohsiek W, Oost W A. Air-sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE[J]. Tellus B, 1999, 51(3): 629−641. doi: 10.3402/tellusb.v51i3.16447
    [26]
    Wanninkhof R, McGillis W R. A cubic relationship between air-sea CO2 exchange and wind speed[J]. Geophysical Research Letters, 1999, 26(13): 1889−1892. doi: 10.1029/1999GL900363
    [27]
    McGillis W R, Edson J B, Hare J E, et al. Direct covariance air-sea CO2 fluxes[J]. Journal of Geophysical Research: Oceans, 2001, 106(C8): 16729−16745. doi: 10.1029/2000JC000506
    [28]
    McGillis W R, Edson J B, Zappa C J, et al. Air-sea CO2 exchange in the equatorial Pacific[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08S02.
    [29]
    Edson J B, Fairall C W, Bariteau L, et al. Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: wind speed dependency[J]. Journal of Geophysical Research: Oceans, 2011, 116(C4): C00F10.
    [30]
    Bakker D C E, Pfeil B, Landa C S, et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)[J]. Earth System Science Data, 2016, 8: 383−413. doi: 10.5194/essd-8-383-2016
    [31]
    Landschützer P, Gruber N, Bakker D C E. An observation-based global monthly gridded sea surface pCO2 product from 1982 onward and its monthly climatology. Version 5.5. [EB/OL]. [2020−07−10]. https://doi.org/10.7289/V5Z899N6.
    [32]
    Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
    [33]
    Iida Y, Takatani Y, Kojima A, et al. Global trends of ocean CO2 sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables[J]. Journal of Oceanography, 2021, 77(2): 323−358. doi: 10.1007/s10872-020-00571-5
    [34]
    Feely R A, Boutin J, Cosca C E, et al. Seasonal and interannual variability of CO2 in the equatorial Pacific[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13/14): 2443−2469.
    [35]
    Wallace J M, Rasmusson E M, Mitchell T P, et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14241−14259. doi: 10.1029/97JC02905
    [36]
    Rasmusson E M, Carpenter T H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño[J]. Monthly Weather Review, 1982, 110(5): 354−384. doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
    [37]
    Krall K E, Smith A W, Takagaki N, et al. Air-sea gas exchange at wind speeds up to 85 m·s−1[J]. Ocean Science, 2019, 15(6): 1783−1799. doi: 10.5194/os-15-1783-2019
    [38]
    Zhao D, Toba Y, Suzuki Y, et al. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter[J]. Tellus B, 2003, 55(2): 478−487.
    [39]
    Zappa C J, Asher W E, Jessup A T, et al. Microbreaking and the enhancement of air-water transfer velocity[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08S16.
    [40]
    Rutgersson A, Smedman A, Sahlée E. Oceanic convective mixing and the impact on air-sea gas transfer velocity[J]. Geophysical Research Letters, 2011, 38(2): L02602.
    [41]
    Salter M E, Upstill-Goddard R C, Nightingale P D, et al. Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11016. doi: 10.1029/2011JC007023
    [42]
    Gu Yuanyuan, Katul G G, Cassar N. The intensifying role of high wind speeds on air-sea carbon dioxide exchange[J]. Geophysical Research Letters, 2021, 48(5): e2020GL090713.
    [43]
    Bell T G, Landwehr S, Miller S D, et al. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds[J]. Atmospheric Chemistry and Physics, 2017, 17(14): 9019−9033. doi: 10.5194/acp-17-9019-2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (728) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return