Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Xu Mengpiao,Dong Peihua,Ma Jun, et al. The effects of spring-neap tide on sediment bedding on tidal flats: A numerical study[J]. Haiyang Xuebao,2021, 43(10):70–80 doi: 10.12284/hyxb2021125
Citation: Xu Mengpiao,Dong Peihua,Ma Jun, et al. The effects of spring-neap tide on sediment bedding on tidal flats: A numerical study[J]. Haiyang Xuebao,2021, 43(10):70–80 doi: 10.12284/hyxb2021125

The effects of spring-neap tide on sediment bedding on tidal flats: A numerical study

doi: 10.12284/hyxb2021125
Funds:  The study is financially supported by State Key Laboratory of Marine Geology, Tongji University (No. MG201901) and Jiangsu Marine Science and Technology Innovation Programme (No. HY2018-1)
  • Received Date: 2020-04-08
  • Rev Recd Date: 2020-06-30
  • Available Online: 2021-06-16
  • Publish Date: 2021-10-30
  • The formation of vertical sedimentary rhythmic layers of tidal flat mainly depends on periodic tidal conditions, including flood and ebb tide, spring and neap tide, seasonal and longer term scale tidal characteristics. In order to investigate the distribution and mechanism of sediment bedding on tidal flats, a one-dimensional numerical model was used to simulate the rhythmic layers of long-term tidal flat bedding layers under spring and neap tidal cycles. Results indicate that the periodicity of spring-neap tide is the main reason for the rhythmicity of sedimentary bedding. One couplet in the rhythm layer corresponds to the spring-neap tidal period, which is formed by the mud-dominated layer during the neap tide and the sand-dominated layer during the spring tide. The thicknesses of layers also show a cyclical change: bedding layers are thicker during the spring tide and thinner during the neap tide. The boundary sediment concentration is also an important factor affecting the structure of tidal couplets. An increasing boundary concentration of silt makes the tidal rhythm layer coarser and increases the overall thickness of the sand-dominated layer. When the boundary sediment concentration significantly increases, the vertical tidal rhythm layers on the tidal flat are more intact with an evident increase in layer thickness. The formation and characteristics of tidal bedding layers are the result of the joint action of many factors (e.g., waves, storms, biological factors and etc.), which await further research effort in the future.
  • loading
  • [1]
    Friedrichs C T. Tidal flat morphodynamics: A synthesis[M]//Wolanski E, McLusky D. Treatise on Estuarine and Coastal Science. Waltham: Academic Press, 2011: 137−170.
    [2]
    Choi K S, Park Y A. Late pleistocene silty tidal rhythmites in the macrotidal flat between Youngjong and Yongyou islands, west coast of Korea[J]. Marine Geology, 2000, 167(3/4): 231−241.
    [3]
    Fan Daidu, Li Congxian, Archer A W, et al. Temporal distribution of diastems in deposits of an open-coast tidal flat with high suspended sediment concentrations[J]. Sedimentary Geology, 2002, 152(3/4): 173−181.
    [4]
    龚小辉, 柏春广, 王建. 淤泥质潮滩沉积周期性研究综述[J]. 南京师大学报(自然科学版), 2012, 35(1): 117−121.

    Gong Xiaohui, Bai Chunguang, Wang Jian. Review of research on sedimentary periodicity of tidal mud flat[J]. Journal of Nanjing Normal University (Natural Science Edition), 2012, 35(1): 117−121.
    [5]
    Deloffre J, Verney R, Lafite R, et al. Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries: Sedimentation rhythms and their preservation[J]. Marine Geology, 2007, 241(1/4): 19−32.
    [6]
    王建, 柏春广, 徐永辉. 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J]. 沉积学报, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014

    Wang Jian, Bai Chunguang, Xu Yonghui. Mechanism of silt-mud couplet of mud tidal flat and discrimination criteria of storm surge sedimentation in the middle Jiangsu Province[J]. Acta Sedimentologica Sinica, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014
    [7]
    范代读, 李从先, 邓兵, 等. 潮汐周期在潮坪沉积中的记录[J]. 同济大学学报, 2002, 30(3): 281−285.

    Fan Daidu, Li Congxian, Deng Bing, et al. Tidal cycles recorded in tidal-flat deposits[J]. Journal of Tongji University, 2002, 30(3): 281−285.
    [8]
    Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011
    [9]
    Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency[J]. Coastal Engineering, 1996, 29(1/2): 47−78.
    [10]
    Van Rijn L C. Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 649−667. doi: 10.1061/(ASCE)0733-9429(2007)133:6(649)
    [11]
    Fagherazzi S, Wiberg P L. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins[J]. Journal of Geophysical Research Earth Surface, 2009, 114(F3): F03022.
    [12]
    Roberts W, Le Hir P, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10/11): 1079−1097.
    [13]
    Green M O, Coco G. Review of wave-driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 2014, 52(1): 77−117. doi: 10.1002/2013RG000437
    [14]
    Soulsby R. Dynamics of Marine Sands: A Manual for Practical Applications[M]. Thomas: Telford, 1997.
    [15]
    Winterwerp J C. On the sedimentation rate of cohesive sediment[J]. Proceedings in Marine Science, 2007, 8: 209−226.
    [16]
    龚政, 靳闯, 张长宽, 等. 江苏淤泥质潮滩剖面演变现场观测[J]. 水科学进展, 2014, 25(6): 880−887.

    Gong Zheng, Jin Chuang, Zhang Changkuan, et al. Surface elevation variation of the Jiangsu mudflats: Field observation[J]. Advances in Water Science, 2014, 25(6): 880−887.
    [17]
    Zhou Zeng, Coco G, van der Wegen M, et al. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves[J]. Continental Shelf Research, 2015, 104: 76−91. doi: 10.1016/j.csr.2015.05.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (327) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return