Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Tao Shuhao,Du Ling. Influence of atmospheric momentum input on Beaufort Gyre long term changes under the Arctic sea ice retreat[J]. Haiyang Xuebao,2021, 43(7):100–113 doi: 10.12284/hyxb2021123
Citation: Tao Shuhao,Du Ling. Influence of atmospheric momentum input on Beaufort Gyre long term changes under the Arctic sea ice retreat[J]. Haiyang Xuebao,2021, 43(7):100–113 doi: 10.12284/hyxb2021123

Influence of atmospheric momentum input on Beaufort Gyre long term changes under the Arctic sea ice retreat

doi: 10.12284/hyxb2021123
  • Received Date: 2020-12-30
  • Rev Recd Date: 2021-04-30
  • Available Online: 2021-06-21
  • Publish Date: 2021-07-25
  • Beaufort Gyre (BG) had presented the significant changes associated with the complicated interactions between the Arctic air-ice-ocean system. In this paper, the observed McLane Moored Profiler data combined with the oceanic and atmospheric reanalysis datasets are used to discuss the influence of atmospheric momentum input on the BG long term changes. The BG exhibited the three different stages from 1980 to 2018 (1980−1995, 1996−2007, 2008−2018). The BG kept a stable state during the recent period (2008−2018). Compared with the first period (1980−1995), the BG strength reached up to 4.39×10−7, and increased nearly twice during the recent period. Meanwhile, the upper ocean processes showed the measurable discrepancies, such as the BG area expanded, gyre moved northwestward, and upper baroclinicity enhanced. Accordingly, the leading upper circulation mode had undergone a significant shift during these two periods. During the recent period, that is the leading Pacific sector mode played the main role in the upper circulation, while the basin mode receded the domination. Since the air-ocean stress represents the atmospheric momentum input process, our study indicated the summer air-ocean stress (August−October) increased remarkably and was even equivalent to the contribution of sea ice. The increased atmospheric momentum input may benefit to the mean kinetic energy increasing, together with the Ekman pumping enhancing and cold halocline deepening. Thus, the mentioned processes resulted in the BG obvious enhancement during the recent period. The southern Canada basin was the key area for the atmospheric momentum input.
  • loading
  • [1]
    Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334−1337. doi: 10.1038/nature09051
    [2]
    Previdi M, Janoski T P, Chiodo G, et al. Arctic amplification: A rapid response to radiative forcing[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089933.
    [3]
    Meier W N, Stroeve J, Barrett A, et al. A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present[J]. The Cryosphere, 2012, 6(6): 1359−1368. doi: 10.5194/tc-6-1359-2012
    [4]
    Perovich D, Meier W, Tschudi M, et al. [The Arctic] sea ice cover [in “State of the Climate in 2018”][J]. Bulletin of the American Meteorological Society, 2019, 100(9): S146−S150.
    [5]
    Davis P E D, Lique C, Johnson H L, et al. Competing effects of elevated vertical mixing and increased freshwater input on the stratification and sea ice cover in a changing Arctic Ocean[J]. Journal of Physical Oceanography, 2016, 46(5): 1531−1553. doi: 10.1175/JPO-D-15-0174.1
    [6]
    Aagaard K, Swift J H, Carmack E C. Thermohaline circulation in the Arctic mediterranean seas[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4833−4846. doi: 10.1029/JC090iC03p04833
    [7]
    Curry R, Mauritzen C. Dilution of the northern North Atlantic Ocean in recent decades[J]. Science, 2005, 308(5729): 1772−1774. doi: 10.1126/science.1109477
    [8]
    Proshutinsky A, Krishfield R, Toole J M, et al. Analysis of the Beaufort Gyre freshwater content in 2003–2018[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9658−9689. doi: 10.1029/2019JC015281
    [9]
    Proshutinsky A, Krishfield R, Timmermans M L, et al. Beaufort Gyre freshwater reservoir: State and variability from observations[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C00A10.
    [10]
    Zhao Mengnan, Timmermans M L, Cole S, et al. Evolution of the eddy field in the Arctic Ocean's Canada Basin, 2005–2015[J]. Geophysical Research Letters, 2016, 43(15): 8106−8114. doi: 10.1002/2016GL069671
    [11]
    Armitage T W K, Manucharyan G E, Petty A A, et al. Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss[J]. Nature Communications, 2020, 11(1): 1−8. doi: 10.1038/s41467-020-14449-z
    [12]
    Zhang Jinlun, Steele M, Runciman K, et al. The Beaufort Gyre intensification and stabilization: A model-observation synthesis[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 7933−7952. doi: 10.1002/2016JC012196
    [13]
    Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre[J]. Nature Geoscience, 2012, 5(3): 194−197. doi: 10.1038/ngeo1379
    [14]
    Armitage T W K, Bacon S, Ridout A L, et al. Arctic Ocean surface geostrophic circulation 2003−2014[J]. The Cryosphere, 2017, 11(4): 1767−1780. doi: 10.5194/tc-11-1767-2017
    [15]
    Zhong Wenli, Steele M, Zhang Jinlun, et al. Greater role of geostrophic currents in Ekman dynamics in the western Arctic Ocean as a mechanism for Beaufort Gyre stabilization[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 149−165. doi: 10.1002/2017JC013282
    [16]
    Xie Jiping, Bertino L, Counillon F, et al. Quality assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991−2013[J]. Ocean Science, 2017, 13(1): 123−144. doi: 10.5194/os-13-123-2017
    [17]
    Kelly S J, Proshutinsky A, Popova E K, et al. On the origin of water masses in the Beaufort Gyre[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4696−4709. doi: 10.1029/2019JC015022
    [18]
    Regan H C, Lique C, Armitage T W K. The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 844−862. doi: 10.1029/2018JC014379
    [19]
    Yang Jiayan. Seasonal and interannual variability of downwelling in the Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C00A14.
    [20]
    Hakkinen S, Proshutinsky A, Ashik I. Sea ice drift in the Arctic since the 1950s[J]. Geophysical Research Letters, 2008, 35(19): L19704. doi: 10.1029/2008GL034791
    [21]
    Spreen G, Kwok R, Menemenlis D. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009[J]. Geophysical Research Letters, 2011, 38(19): L19501.
    [22]
    Martin T, Steele M, Zhang Jinlun. Seasonality and long-term trend of Arctic Ocean surface stress in a model[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1723−1738. doi: 10.1002/2013JC009425
    [23]
    Serreze M C, Barrett A P. Characteristics of the Beaufort Sea high[J]. Journal of Climate, 2011, 24(1): 159−182. doi: 10.1175/2010JCLI3636.1
    [24]
    Moore G W K. Decadal variability and a recent amplification of the summer Beaufort Sea High[J]. Geophysical Research Letters, 2012, 39(10): L10807.
    [25]
    Proshutinsky A, Bourke R H, McLaughlin F A. The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales[J]. Geophysical Research Letters, 2002, 29(23): 15-1−15-4. doi: 10.1029/2002GL015847
    [26]
    Proshutinsky A, Dukhovskoy D, Timmermans M L, et al. Arctic circulation regimes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2052): 20140160. doi: 10.1098/rsta.2014.0160
    [27]
    Wu Bingyi, Johnson M A. A seesaw structure in SLP anomalies between the Beaufort Sea and the Barents Sea[J]. Geophysical Research Letters, 2007, 34(5): L05811.
    [28]
    Doddridge E W, Meneghello G, Marshall J, et al. A three-way balance in the Beaufort Gyre: The Ice-Ocean Governor, wind stress, and eddy diffusivity[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3107−3124. doi: 10.1029/2018JC014897
    [29]
    Karcher M, Smith J N, Kauker F, et al. Recent changes in Arctic Ocean circulation revealed by iodine-129 observations and modeling[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08007.
    [30]
    Davis P E D, Lique C, Johnson H L. On the link between Arctic sea ice decline and the freshwater content of the Beaufort Gyre: Insights from a simple process model[J]. Journal of Climate, 2014, 27(21): 8170−8184. doi: 10.1175/JCLI-D-14-00090.1
    [31]
    Meneghello G, Marshall J, Campin J M, et al. The ice-ocean governor: Ice-ocean stress feedback limits Beaufort Gyre spin-up[J]. Geophysical Research Letters, 2018, 45(20): 11293−11299.
    [32]
    Timmermans M L, Marshall J. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2018JC014378.
    [33]
    Meier W N, Fetterer F, Savoie S, et al. NOAA/NSIDC climate data record of passive microwave sea ice concentration, Version 3[R]. Boulder, Colorado USA: National Snow and Ice Data Center, 2017.
    [34]
    Carton J A, Chepurin G A, Chen Ligang. SODA3: A new ocean climate reanalysis[J]. Journal of Climate, 2018, 31(17): 6967−6983. doi: 10.1175/JCLI-D-18-0149.1
    [35]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [36]
    Armitage T W K, Bacon S, Ridout A L, et al. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4303−4322. doi: 10.1002/2015JC011579
    [37]
    Proshutinsky A Y, Johnson M A. Two circulation regimes of the wind-driven Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12493−12514. doi: 10.1029/97JC00738
    [38]
    Manucharyan G E, Isachsen P E. Critical role of continental slopes in halocline and eddy dynamics of the Ekman-driven Beaufort Gyre[J]. Journal of Geophysical Research: Oceans, 2019, 124(4): 2679−2696. doi: 10.1029/2018JC014624
    [39]
    Manucharyan G E, Spall M A. Wind-driven freshwater buildup and release in the Beaufort Gyre constrained by mesoscale eddies[J]. Geophysical Research Letters, 2016, 43(1): 273−282. doi: 10.1002/2015GL065957
    [40]
    Dewey S R, Morison J H, Zhang Jinlun. An edge-referenced surface fresh layer in the Beaufort Sea seasonal ice zone[J]. Journal of Physical Oceanography, 2017, 47(5): 1125−1144. doi: 10.1175/JPO-D-16-0158.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (171) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return