Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 11
Dec.  2021
Turn off MathJax
Article Contents
Cai Runjia,Zhang Jing,Huang Jiansheng, et al. Effects of low temperature stress on the expression of genes related to lipid metabolism of juvenile cobia, Rachycentron canadum[J]. Haiyang Xuebao,2021, 43(11):116–122 doi: 10.12284/hyxb2021122
Citation: Cai Runjia,Zhang Jing,Huang Jiansheng, et al. Effects of low temperature stress on the expression of genes related to lipid metabolism of juvenile cobia, Rachycentron canadum [J]. Haiyang Xuebao,2021, 43(11):116–122 doi: 10.12284/hyxb2021122

Effects of low temperature stress on the expression of genes related to lipid metabolism of juvenile cobia, Rachycentron canadum

doi: 10.12284/hyxb2021122
  • Received Date: 2021-01-01
  • Rev Recd Date: 2021-03-30
  • Available Online: 2021-05-08
  • Publish Date: 2021-12-31
  • In order to explore the effects of low temperature stress on the expression of genes related to lipid synthesis and catabolism in cobia (Rachycentron canadum), the experiment set up a normal temperature group (30.5±1.0)°C and a low temperature group (20.0±0.5)°C, and used real-time fluorescent quantitative PCR (qRT-PCR) to analyze the expression levels of 5 target genes in liver, muscle and intraperitoneal fat (IPF). The results showed that at 1 d, the expression of carnitine palmitoyl transferase-1 and hormone-sensitive lipase genes of liver, carnitine palmitoyl transferase-1, hormone-sensitive lipase and monoacylglycerol lipase genes of muscle were up-regulated (p<0.05), acetyl-CoA carboxylase and fatty acid synthase genes of liver, muscle and 5 lipid metabolism related genes of IPF were significantly down-regulated (p<0.05); at 4 d, the expression of carnitine palmitoyl transferase-1, hormone-sensitive lipase and monoacylglycerol lipase genes of liver, and hormone-sensitive lipase, monoacylglycerol lipase, acetyl-CoA carboxylase, fatty acid synthase genes of muscle and carnitine palmitoyl transferase-1, hormone-sensitive lipase, monoacylglycerol lipase, acetyl-CoA carboxylase genes of IPF were up-regulated (p<0.05), acetyl-CoA carboxylase and fatty acid synthase gene of liver were down-regulated (p<0.05); at 7 d, the expressions of carnitine palmitoyl transferase-1, hormone-sensitive lipase, monoacylglycerol lipase, acetyl-CoA carboxylase genes of liver and IPF, and hormone-sensitive lipase, monoacylglycerol lipase, acetyl-CoA carboxylase genes of muscle were up-regulated (p<0.05), carnitine palmitoyl transferase-1 gene of muscle and fatty acid synthase genes of liver were down-regulated (p<0.05). The results showed that cobia responded to low temperature stress by inhibiting lipid synthesis and metabolism, promoting lipid hydrolysis in the liver and muscle, and inhibiting the lipid hydrolysis of IPF in the early stage of low temperature stress; in the late period of low temperature stress, cobia lipid synthesis and catabolism were significantly increased, and the main tissue that used fatty acids to provide energy was transformed from the liver and muscle to liver and IPF.
  • loading
  • [1]
    管敏, 张厚本, 王龙, 等. 急性低温胁迫对史氏鲟幼鱼抗氧化和免疫指标的影响[J]. 淡水渔业, 2018, 48(6): 17−22. doi: 10.3969/j.issn.1000-6907.2018.06.003

    Guan Min, Zhang Houben, Wang Long, et al. The effects of acute low temperature stress on antioxidative and immune indices of juvenile Amur sturgeon (Acipenser schrenckii)[J]. Freshwater Fisheries, 2018, 48(6): 17−22. doi: 10.3969/j.issn.1000-6907.2018.06.003
    [2]
    冉皓宇, 陈良标. 低温驯化对斑马鱼胚胎发育和mtDNA拷贝数的影响[J]. 生物学杂志, 2019, 36(5): 16−20. doi: 10.3969/j.issn.2095-1736.2019.05.016

    Ran Haoyu, Chen Liangbiao. Effects of cold acclimation on the embryogenesis and mtDNA copy number in zebrafish embryos[J]. Journal of Biology, 2019, 36(5): 16−20. doi: 10.3969/j.issn.2095-1736.2019.05.016
    [3]
    张宇航, 高扬, 李文红, 等. 低温停食和复温后投喂频率对奥尼罗非鱼幼鱼生长的影响[J]. 西南农业学报, 2020, 33(9): 2125−2131.

    Zhang Yuhang, Gao Yang, Li Wenhong, et al. Effects of feeding frequency after food deprivation with low temperature and rewarming on growth of hybrid tilapia juvenile (Oreochromis niloticus×O.aureus)[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 2125−2131.
    [4]
    Ibarz A, Beltrán M, Fernández-Borràs J, et al. Alterations in lipid metabolism and use of energy depots of gilthead sea bream (Sparus aurata) at low temperatures[J]. Aquaculture, 2007, 262(2/4): 470−480.
    [5]
    He J, Qiang J, Yang H, et al. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress[J]. Journal of Thermal Biology, 2015, 53: 90−97. doi: 10.1016/j.jtherbio.2015.08.010
    [6]
    Sun Junlong, Zhao Liulan, Cui Can, et al. Influence of long-term temperature stress on respiration frequency, Na+/K+-ATPase activity, and lipid metabolism in common carp (Cyprinus carpio)[J]. Journal of Thermal Biology, 2019, 83: 165−171. doi: 10.1016/j.jtherbio.2019.05.009
    [7]
    Sun Zhenzhu, Tan Xiaohong, Liu Qingying, et al. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress[J]. Aquaculture, 2019, 498: 545−555. doi: 10.1016/j.aquaculture.2018.08.051
    [8]
    方玲玲. 卵形鲳鲹PPARαCPTⅠ基因的克隆及不同条件对其表达影响的分析[D]. 湛江: 广东海洋大学, 2016.

    Fang Lingling. Molecular cloning and expression under the different conditions of peroxisome proliferator activated receptors-α and Carnitine PalmitoyltransferaseⅠ in Trachinotus ovatus[D]. Zhanjiang: Guangdong Ocean University, 2016.
    [9]
    Mininni A N, Milan M, Ferraresso S, et al. Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature[J]. BMC Genomics, 2014, 15(1): 765. doi: 10.1186/1471-2164-15-765
    [10]
    萧培珍. 日粮中添加水飞蓟素对草鱼脂质代谢的影响及其机制研究[D]. 杨凌: 西北农林科技大学, 2017.

    Xiao Peizhen. Effect of dietary silymarin on lipid metabolism of grass carp (Ctenopharygodon idellus)[D]. Yangling: Northwest A&F University, 2017.
    [11]
    Lampidonis A D, Rogdakis E, Voutsinas G E, et al. The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis[J]. Gene, 2011, 477(1/2): 1−11.
    [12]
    Blankman J L, Simon G M, Cravatt B F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol[J]. Chemistry & Biology, 2007, 14(12): 1347−1356.
    [13]
    Long J Z, Li Weiwei, Booker L, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects[J]. Nature Chemical Biology, 2009, 5(1): 37−44. doi: 10.1038/nchembio.129
    [14]
    Mannaerts G P, Debeer L J, Thomas J, et al. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats[J]. Journal of Biological Chemistry, 1979, 254(11): 4585−4595. doi: 10.1016/S0021-9258(17)30051-0
    [15]
    杨健, 陈刚, 黄建盛, 等. 温度和盐度对军曹鱼幼鱼生长与抗氧化酶活性的影响[J]. 广东海洋大学学报, 2007, 27(4): 25−29. doi: 10.3969/j.issn.1673-9159.2007.04.006

    Yang Jian, Chen Gang, Huang Jiansheng, et al. Effects of temperature and salinity on the growth and activities of antioxidant enzymes of cobia (Rachycentron canadum) juveniles[J]. Journal of Guangdong Ocean University, 2007, 27(4): 25−29. doi: 10.3969/j.issn.1673-9159.2007.04.006
    [16]
    孙丽华, 陈浩如. 温度和体质量对军曹鱼生长及氮收支的影响[J]. 水产学报, 2013, 37(10): 1527−1534. doi: 10.3724/SP.J.1231.2013.38597

    Sun Lihua, Chen Haoru. Effects of water temperature and fish size on growth and nitrogen budget of cobia (Rachycentron canadum)[J]. Journal of Fisheries of China, 2013, 37(10): 1527−1534. doi: 10.3724/SP.J.1231.2013.38597
    [17]
    Ackman R G. Fish lipids, Part 1[M]. Farnham, Surrey: Fishing News Books Ltd., 1980: 86−103.
    [18]
    Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101−1108. doi: 10.1038/nprot.2008.73
    [19]
    Wen Bin, Jin Shirong, Chen Zaizhong, et al. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics[J]. Science of the Total Environment, 2018, 640−641: 1372−1381. doi: 10.1016/j.scitotenv.2018.05.401
    [20]
    Dietrich M A, Hliwa P, Adamek M, et al. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism[J]. Fish and Shellfish Immunology, 2018, 76: 305−315. doi: 10.1016/j.fsi.2018.03.018
    [21]
    Mateus A P, Costa R, Gisbert E, et al. Thermal imprinting modifies bone homeostasis in cold challenged sea bream (Sparus aurata)[J]. Journal of Experimental Biology, 2017, 220: 3442−3454. doi: 10.1242/jeb.156174
    [22]
    Lu Dongliang, Ma Qiang, Wang Jing, et al. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy[J]. The Journal of Physiology, 2019, 597(6): 1585−1603. doi: 10.1113/JP277091
    [23]
    邓伟. 温度胁迫对多鳞白甲鱼AMPK介导的能量稳态及脂肪酸代谢的影响[D]. 杨凌: 西北农林科技大学, 2019.

    Deng Wei. Influence of temperature stress on the AMPK-mediated energy homeostasis and fatty acid metabolism in Onychostoma macrolepis[D]. Yangling: Northwest A&F University, 2019.
    [24]
    林超, 柳军, 孙宏斌. 脂质生物合成的转录调控、相关靶标确证及新药发现[J]. 中国科学: 化学, 2015, 45(9): 923−936. doi: 10.1360/N032015-00114

    Lin Chao, Liu Jun, Sun Hongbin. Transcriptional regulation of lipid biosynthesis, related target validation and drug discovery[J]. Scientia Sinica Chimica, 2015, 45(9): 923−936. doi: 10.1360/N032015-00114
    [25]
    严媛, 程汉良, 许建和, 等. 草鱼乙酰辅酶A羧化酶β基因全长cDNA分子克隆与表达分析[J]. 动物营养学报, 2018, 30(5): 1827−1836. doi: 10.3969/j.issn.1006-267x.2018.05.025

    Yan Yuan, Cheng Hanliang, Xu Jianhe, et al. Molecular cloning of acetyl-CoA carboxylase β full-length cDNA from grass carp (Ctenopharyngodon idella) and expression analysis[J]. Chinese Journal of Animal Nutrition, 2018, 30(5): 1827−1836. doi: 10.3969/j.issn.1006-267x.2018.05.025
    [26]
    杨文平, 王爱民, 於叶兵, 等. 梭鱼脂肪酸合成酶基因部分片段的克隆和表达分析[J]. 江苏农业科学, 2017, 45(23): 49−54.

    Yang Wenping, Wang Aimin, Yu Yebin, et al. Cloning and expression analysis of partial fragments of fatty acid synthase gene from Liza haematocheila[J]. Jiangsu Agricultural Sciences, 2017, 45(23): 49−54.
    [27]
    McGarry J D, Brown H F. The mitochondrial carnitine palmitoyltransferase system—From concept to molecular analysis[J]. European Journal of Biochemistry, 1997, 244(1): 1−14. doi: 10.1111/j.1432-1033.1997.00001.x
    [28]
    李亮, 程彦伟. 乙酰辅酶A羧化酶在治疗肥胖中的潜在作用[J]. 生命的化学, 2007, 27(2): 180−182. doi: 10.3969/j.issn.1000-1336.2007.02.030

    Li Liang, Cheng Yanwei. The potential effects of Acetyl-CoA carboxylase in curing obesity[J]. Chemistry of Life, 2007, 27(2): 180−182. doi: 10.3969/j.issn.1000-1336.2007.02.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (144) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return