Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Shen Feifei,Min Jinzhong,Li Hong, et al. Effect of data assimilation of GPM microwave imager on the track forecast of Typhoon Matmo[J]. Haiyang Xuebao,2021, 43(10):124–136 doi: 10.12284/hyxb2021121
Citation: Shen Feifei,Min Jinzhong,Li Hong, et al. Effect of data assimilation of GPM microwave imager on the track forecast of Typhoon Matmo[J]. Haiyang Xuebao,2021, 43(10):124–136 doi: 10.12284/hyxb2021121

Effect of data assimilation of GPM microwave imager on the track forecast of Typhoon Matmo

doi: 10.12284/hyxb2021121
  • Received Date: 2019-04-30
  • Rev Recd Date: 2019-11-23
  • Available Online: 2021-05-24
  • Publish Date: 2021-10-30
  • The interface of assimilating radiance on a new satellite sensor GMI (Global Precipitation Measurement (GPM) microwave imager) was constructed in the framework of the mesoscale numerical model WRF (Weather Research and Forecasting Model) and its three-dimensional variational assimilation system (3DVAR). The assimilation of GMI radiance data is applied for the typhoon system based on the case of typhoon Matmo in the Pacific typhoon season in 2014 before its landing. The results show that, after assimilating the GMI radiance data under the clear sky condition, the typhoon position in the background of the model is effectively corrected. The GMI data are able to improve the warm core structure of the typhoon when compared with the control experiment without assimilation and enhanced the typhoon vortex circulation structure at the same time. Data assimilating of GMI data further improves the forecast skills of the typhoon track.
  • loading
  • [1]
    Derber J C, Wu W S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system[J]. Monthly Weather Review, 1997, 126(8): 2287−2299.
    [2]
    McNally A P, Derber J C, Wu W, et al. The use of TOVS level-1b radiances in the NCEP SSI analysis system[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(563): 689−724. doi: 10.1002/qj.49712656315
    [3]
    Okamoto K, Derber J C. Assimilation of SSM/I radiances in the NCEP global data assimilation system[J]. Monthly Weather Review, 2006, 134(9): 2612−2631. doi: 10.1175/MWR3205.1
    [4]
    Bauer P, Lopez P, Benedetti A, et al. Implementation of 1D+4D-Var assimilation of precipitation affected microwave radiances at ECMWF. I: 1D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(620): 2277−2306. doi: 10.1256/qj.05.189
    [5]
    Miyoshi T, Sato Y. Assimilating satellite radiances with a local ensemble transform Kalman filter (LETKF) applied to the JMA global model (GSM)[J]. SOLA, 2007, 3: 37−40. doi: 10.2151/sola.2007-010
    [6]
    Sakamoto M, Christy J R. The influences of TOVS radiance assimilation on temperature and moisture tendencies in JRA-25 and ERA-40[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(8): 1435−1455. doi: 10.1175/2009JTECHA1193.1
    [7]
    Goerss J. Impact of satellite observations on the tropical cyclone track forecasts of the navy operational global atmospheric prediction system[J]. Monthly Weather Review, 2009, 137(1): 41−50. doi: 10.1175/2008MWR2601.1
    [8]
    Aravéquia J A, Szunyogh I, Fertig E J, et al. Evaluation of a strategy for the assimilation of satellite radiance observations with the local ensemble transform Kalman filter[J]. Monthly Weather Review, 2011, 139(6): 1932−1951. doi: 10.1175/2010MWR3515.1
    [9]
    Hoppel K W, Eckermann S D, Coy L, et al. Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation[J]. Monthly Weather Review, 2013, 141(10): 3314−3330. doi: 10.1175/MWR-D-13-00003.1
    [10]
    Zou Xiaolei, Qin Zhengkun, Weng Fuzhong. Improved coastal precipitation forecasts with direct assimilation of GOES-11/12 imager radiances[J]. Monthly Weather Review, 2011, 139(12): 3711−3729. doi: 10.1175/MWR-D-10-05040.1
    [11]
    Liu Zhiquan, Schwartz C S, Snyder C, et al. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter[J]. Monthly Weather Review, 2012, 140(12): 4017−4034. doi: 10.1175/MWR-D-12-00083.1
    [12]
    Qin Zhengkun, Zou Xiaolei, Weng Fuzhong. Evaluating added benefits of assimilating GOES imager radiance data in GSI for coastal QPFs[J]. Monthly Weather Review, 2013, 141(1): 75−92. doi: 10.1175/MWR-D-12-00079.1
    [13]
    Zhang Man, Zupanski M, Kim M J, et al. Assimilating AMSU-A radiances in the TC core area with NOAA operational HWRF (2011) and a hybrid data assimilation system: Danielle (2010)[J]. Monthly Weather Review, 2013, 141(11): 3889−3907. doi: 10.1175/MWR-D-12-00340.1
    [14]
    Zhang S Q, Zupanski M, Hou A Y, et al. Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system[J]. Monthly Weather Review, 2013, 141(2): 754−772. doi: 10.1175/MWR-D-12-00055.1
    [15]
    Kazumori M. Satellite radiance assimilation in the JMA operational mesoscale 4DVAR system[J]. Monthly Weather Review, 2014, 142(3): 1361−1381. doi: 10.1175/MWR-D-13-00135.1
    [16]
    Wang P, Li J, Goldberg M D, et al. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5469−5484. doi: 10.1002/2014JD022976
    [17]
    Lin Haidao, Weygandt S S, Benjamin S G, et al. Satellite radiance data assimilation within the hourly updated rapid refresh[J]. Weather and Forecasting, 2017, 32(4): 1273−1287. doi: 10.1175/WAF-D-16-0215.1
    [18]
    郭云霞, 侯一筠, 齐鹏. Monte-Carlo模拟与经验路径模型预测台风极值风速的对比[J]. 海洋学报, 2020, 42(7): 64−77.

    Guo Yunxia, Hou Yijun, Qi Peng. Comparison of extreme wind speeds predicted by Monte-Carlo simulation and empirical track model[J]. Haiyang Xuebao, 2020, 42(7): 64−77.
    [19]
    沈菲菲, 唐超, 许冬梅, 等. 基于不同背景场条件的雷达资料同化在登陆台风“桑美”中的应用研究[J]. 海洋学报, 2021, 43(1): 69−81.

    Shen Feifei, Tang Chao, Xu Dongmei, et al. Experiment of assimilating Doppler radar data in Typhoon Saomai based on the different initial conditions[J]. Haiyang Xuebao, 2021, 43(1): 69−81.
    [20]
    Xu D, Liu Z, Huang X Y, et al. Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones[J]. Meteorology and Atmospheric Physics, 2013, 122: 1−18. doi: 10.1007/s00703-013-0276-2
    [21]
    Zou X, Weng F, Zhang Banglin, et al. Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(20): 11558−11576.
    [22]
    Zhang Hailing, Pu Zhaoxia. Influence of assimilating surface observations on numerical prediction of landfalls of Hurricane Katrina (2005) with an ensemble Kalman filter[J]. Monthly Weather Review, 2014, 142(8): 2915−2934. doi: 10.1175/MWR-D-14-00014.1
    [23]
    Yang Chun, Liu Zhiquan, Bresch J, et al. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system[J]. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 30917. doi: 10.3402/tellusa.v68.30917
    [24]
    Xu Dongmei, Min Jinzhong, Shen Feifei, et al. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(2): 1014−1028. doi: 10.1002/2016MS000674
    [25]
    Wu Tingchi, Zupanski M, Grasso L D, et al. The GSI capability to assimilate TRMM and GPM hydrometeor retrievals in HWRF[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(700): 2768−2787. doi: 10.1002/qj.2867
    [26]
    Hou A Y, Kakar R K, Neeck S, et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2014, 95(5): 701−722. doi: 10.1175/BAMS-D-13-00164.1
    [27]
    Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 809−817. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
    [28]
    Barker D, Huang Xiangyu, Liu Zhiquan, et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA[J]. Bulletin of the American Meteorological Society, 2012, 93(6): 831−843. doi: 10.1175/BAMS-D-11-00167.1
    [29]
    张卫民, 朱小谦, 赵军. 气象资料三维变分同化阶段区域分解并行实现[J]. 计算机研究与发展, 2005, 42(6): 1059−1064. doi: 10.1360/crad20050624

    Zhang Weimin, Zhu Xiaoqian, Zhao Jun. Implementation of phase domain decomposition parallel algorithm of three dimensional variational data assimilation[J]. Journal of Computer Research and Development, 2005, 42(6): 1059−1064. doi: 10.1360/crad20050624
    [30]
    Parrish D F, Derber J C. The National Meteorological Center's spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8): 1747−1763. doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    [31]
    Migliorini S. On the equivalence between radiance and retrieval assimilation[J]. Monthly Weather Review, 2012, 140(1): 258−265. doi: 10.1175/MWR-D-10-05047.1
    [32]
    杨春, 闵锦忠, 刘志权. AMSR2辐射率资料同化对台风“山神”分析和预报的影响研究[J]. 大气科学, 2017, 41(2): 372−384. doi: 10.3878/j.issn.1006-9895.1608.16127

    Yang Chun, Min Jinzhong, Liu Zhiquan. The impact of AMSR2 radiance data assimilation on the analysis and forecast of typhoon son-tinh[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(2): 372−384. doi: 10.3878/j.issn.1006-9895.1608.16127
    [33]
    Dee D. Variational bias correction of radiance data in the ECMWF system[C]//Proceedings of ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP. Reading, United Kingdom: ECMWF, 2004: 97−112.
    [34]
    刘志权, 张凤英, 吴雪宝, 等. 区域极轨卫星ATOVS辐射偏差订正方法研究[J]. 气象学报, 2007, 65(1): 113−123.

    Liu Zhiquan, Zhang Fengying, Wu Xuebao, et al. A regional ATOVS radiance-bias correction scheme for rediance assimilation[J]. Acta Meteorologica Sinica, 2007, 65(1): 113−123.
    [35]
    Hong S Y, Lim J O J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Journal of the Korean Meteorological Society, 2006, 42(2): 129−151.
    [36]
    Tiedtke M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Monthly Weather Review, 1989, 117(8): 1779−1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
    [37]
    Zhang Chunxi, Wang Yuqing, Hamilton K. Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme[J]. Monthly Weather Review, 2011, 139(11): 3489−3513. doi: 10.1175/MWR-D-10-05091.1
    [38]
    Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [39]
    Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13): D13103. doi: 10.1029/2008JD009944
    [40]
    Chen Fei, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569−585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
    [41]
    Jiménez P A, Dudhia J, González-Rouco J F, et al. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 2012, 140: 898−918. doi: 10.1175/MWR-D-11-00056.1
    [42]
    张爱忠, 齐琳琳, 纪飞, 等. 资料同化方法研究进展[J]. 气象科技, 2005, 33(5): 385−389, 393. doi: 10.3969/j.issn.1671-6345.2005.05.001

    Zhang Aizhong, Qi Linlin, Ji Fei, et al. Advancement in data assimilation method research[J]. Meteorological Science and Technology, 2005, 33(5): 385−389, 393. doi: 10.3969/j.issn.1671-6345.2005.05.001
    [43]
    Wang Xuguang. Application of the WRF Hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts[J]. Weather and Forecasting, 2011, 26(6): 868−884. doi: 10.1175/WAF-D-10-05058.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views (422) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return