Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Zhen Zhanghe,Zhu Ruidan,Qin Song, et al. Ultra-fast energy transfer process of recombinant allophycocyanin[J]. Haiyang Xuebao,2021, 43(9):115–125 doi: 10.12284/hyxb2021120
Citation: Zhen Zhanghe,Zhu Ruidan,Qin Song, et al. Ultra-fast energy transfer process of recombinant allophycocyanin[J]. Haiyang Xuebao,2021, 43(9):115–125 doi: 10.12284/hyxb2021120

Ultra-fast energy transfer process of recombinant allophycocyanin

doi: 10.12284/hyxb2021120
  • Received Date: 2021-02-19
  • Rev Recd Date: 2021-04-13
  • Available Online: 2021-05-28
  • Publish Date: 2021-09-25
  • Phycobilisomes are photosynthetic light-harvesting antenna complexes unique to red algae and cyanobacteria. Allophycocyanin (APC) is the main component of the core structure of phycobilisomes. In this experiment, recombinant allophycocyanin (rAPC) was used as the material, and the structure conformation and energy transfer process of rAPC were studied through steady-state spectroscopy, circular dichroic spectroscopy, and ultrafast time-resolved spectroscopy. The results show that rAPC can maintain the same spectral characteristics and active conformation as natural APC under the test conditions; after rAPC monomers are assembled into trimer, the results confirmed that α84PCB and β84PCB can form an exciton pigment pair which can improve the energy transfer efficiency of the rAPC trimer through exciton splitting; ultrafast time-resolved spectroscopy results show that the energy transfer time from 620 nm to 650 nm is 300−600 fs, and there is also a 19 fs exciton state electronic decoherence process. These results provide a data basis for revealing the efficient energy transfer mechanism of phycobilisomes.
  • loading
  • [1]
    Büchel C. Evolution and function of light harvesting proteins[J]. Journal of Plant Physiology, 2015, 172: 62−75. doi: 10.1016/j.jplph.2014.04.018
    [2]
    Guglielmi G, Cohen-Bazire G, Bryant D A. The structure of Gloeobacter violaceus and its phycobilisomes[J]. Archives of Microbiology, 1981, 129(3): 181−189. doi: 10.1007/BF00425248
    [3]
    Green B R. What happened to the phycobilisome?[J]. Biomolecules, 2019, 9(11): 748. doi: 10.3390/biom9110748
    [4]
    王肖肖, 秦松, 杨革, 等. 藻胆体的结构与能量传递功能[J]. 海洋科学, 2017, 41(12): 139−145. doi: 10.11759/hykx20170627002

    Wang Xiaoxiao, Qin Song, Yang Ge, et al. Structure and energy transfer of phycobilisome[J]. Marine Sciences, 2017, 41(12): 139−145. doi: 10.11759/hykx20170627002
    [5]
    赵福利, 张景民, 郑锡光, 等. 红藻藻胆体内部蛋白间的能量传递研究人工合成复合物R-PE/R-PC以及R-PE/APC内的能量传递[C]//第九届全国凝聚态光学性质学术会议论文集. 珠海: 中国物理学会, 1999.

    Zhao Fuli, Zhang Jingmin, Zheng Xiguang, et al. Energy transfer among proteins in the phycobilisome of red algae: Energy transfer in synthesized complex of R-PE/R-PC and R-PE/APC[C]//National Conference on Optical Properties of Condensed Matter. Zhuhai: Chinese Physical Society, 1999.
    [6]
    Kirilovsky D, Büchel C. Chapter Nine—Evolution and function of light-harvesting antenna in oxygenic photosynthesis[J]. Advances in Botanical Research, 2019, 91: 247−293.
    [7]
    Marx A, Adir N. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(3): 311−318. doi: 10.1016/j.bbabio.2012.11.006
    [8]
    Liu Jinyu, Jiang Tao, Zhang Jiping, et al. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution[J]. Journal of Biological Chemistry, 1999, 274(24): 16945−16952. doi: 10.1074/jbc.274.24.16945
    [9]
    MacColl R. Allophycocyanin and energy transfer[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004, 1657(2/3): 73−81.
    [10]
    Karpulevich A A, Maksimov E G, Sluchanko N N, et al. Highly efficient energy transfer from quantum dot to allophycocyanin in hybrid structures[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 160: 96−101. doi: 10.1016/j.jphotobiol.2016.03.048
    [11]
    Womick J M, Moran A M. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes[J]. The Journal of Physical Chemistry B, 2011, 115(6): 1347−1356. doi: 10.1021/jp106713q
    [12]
    Zhang J M, Shiu Y J, Hayashi M, et al. Investigations of ultrafast exciton dynamics in allophycocyanin trimer[J]. The Journal of Physical Chemistry A, 2001, 105(39): 8878−8891. doi: 10.1021/jp011266a
    [13]
    Womick J M, Moran A M. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin[J]. The Journal of Physical Chemistry B, 2009, 113(48): 15747−15759. doi: 10.1021/jp907644h
    [14]
    Edington M D, Riter R E, Beck W F. Evidence for coherent energy transfer in allophycocyanin trimers[J]. The Journal of Physical Chemistry, 1995, 99(43): 15699−15704. doi: 10.1021/j100043a001
    [15]
    Collini E, Wong C Y, Wilk K E, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature[J]. Nature, 2010, 463(7281): 644−647. doi: 10.1038/nature08811
    [16]
    Dean J C, Mirkovic T, Toa Z S D, et al. Vibronic enhancement of algae light harvesting[J]. Chem, 2016, 1(6): 858−872. doi: 10.1016/j.chempr.2016.11.002
    [17]
    Liu Shaofeng, Chen Yingjie, Lu Yandu, et al. Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli[J]. Photosynthesis Research, 2010, 105(2): 135−142. doi: 10.1007/s11120-010-9574-4
    [18]
    Su Hainan, Xie Binbin, Chen Xiulan, et al. Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis[J]. Journal of Applied Phycology, 2010, 22(1): 65−70. doi: 10.1007/s10811-009-9427-8
    [19]
    Dagnino-Leone J, Figueroa M, Uribe E, et al. Biosynthesis and characterization of a recombinant eukaryotic allophycocyanin using prokaryotic accessory enzymes[J]. Microbiology Open, 2020, 9(3): e989.
    [20]
    李文军, 蒲洋, 牛壮, 等. 重组别藻蓝蛋白三聚体结构与功能[J]. 科学通报, 2017, 62(16): 1699−1713. doi: 10.1360/N972016-01416

    Li Wenjun, Pu Yang, Niu Zhuang, et al. Structural and functional investigation of allophycocyanin trimer[J]. Chinese Science Bulletin, 2017, 62(16): 1699−1713. doi: 10.1360/N972016-01416
    [21]
    Zhu Ruidan, Zou Jiading, Wang Zhuan, et al. Electronic state-resolved multimode-coupled vibrational wavepackets in oxazine 720 by two-dimensional electronic spectroscopy[J]. The Journal of Physical Chemistry A, 2020, 124(45): 9333−9342. doi: 10.1021/acs.jpca.0c06559
    [22]
    王云鹏, 王专, 翁羽翔. 凝聚相分子振动量子拍的20 fs时间分辨光谱实时观测[J]. 科学通报, 2012, 57(31): 2895−2898. doi: 10.1360/972012-587

    Wang Yunpeng, Wang Zhuan, Weng Yuxiang. Real-time observation of vibrational quantum beat in condensed phase by 20 fs time-resolved spectroscopy[J]. Chinese Science Bulletin, 2012, 57(31): 2895−2898. doi: 10.1360/972012-587
    [23]
    Roychoudhuri C. Causal Physics: Photons by Non-Interactions of Waves[M]. Boca Raton: CRC Press, 2014.
    [24]
    Homoelle B J, Edington M D, Diffey W M, et al. Stimulated photon-echo and transient-grating studies of protein-matrix solvation dynamics and interexciton-state radiationless decay in α phycocyanin and allophycocyanin[J]. The Journal of Physical Chemistry B, 1998, 102(16): 3044−3052. doi: 10.1021/jp972782x
    [25]
    McGregor A, Klartag M, David L, et al. Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket[J]. Journal of Molecular Biology, 2008, 384(2): 406−421. doi: 10.1016/j.jmb.2008.09.018
    [26]
    Sonani R R, Gupta G D, Madamwar D, et al. Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. A09DM[J]. PLoS One, 2015, 10(4): e0124580. doi: 10.1371/journal.pone.0124580
    [27]
    Edington M D, Riter R E, Beck W F. Interexciton-state relaxation and exciton localization in allophycocyanin trimers[J]. The Journal of Physical Chemistry, 1996, 100(33): 14206−14217. doi: 10.1021/jp960454b
    [28]
    MacColl R. Cyanobacterial phycobilisomes[J]. Journal of Structural Biology, 1998, 124(2/3): 311−334.
    [29]
    Brejc K, Ficner R, Huber R, et al. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution[J]. Journal of Molecular Biology, 1995, 249(2): 424−440. doi: 10.1006/jmbi.1995.0307
    [30]
    苏海楠. 蓝藻与红藻中藻胆蛋白的活性构象研究[D]. 济南: 山东大学, 2010.

    Su Hainan. Study on the active conformations of phycobiliproteins from cyanobacteria and red algae[D]. Jinan: Shandong University, 2010.
    [31]
    蒲洋. 重组别藻蓝蛋白三聚体结构鉴定及敏化特性的研究[D]. 北京: 中国科学院大学, 2013.

    Pu Yang. Structure determination and sensitization property study of recombinant allophycocyanin trimer[D]. Beijing: The University of Chinese Academy of Sciences, 2013.
    [32]
    Van Grondelle R, Novoderezhkin V I. Energy transfer in photosynthesis: experimental insights and quantitative models[J]. Physical Chemistry Chemical Physics, 2006, 8(7): 793−807. doi: 10.1039/B514032C
    [33]
    Beljonne D, Curutchet C, Scholes G D, et al. Beyond förster resonance energy transfer in biological and nanoscale systems[J]. The Journal of Physical Chemistry B, 2009, 113(19): 6583−6599. doi: 10.1021/jp900708f
    [34]
    Holzwarth A R, Bittersmann E, Reuter W, et al. Studies on chromophore coupling in isolated phycobiliproteins: III. Picosecond excited state kinetics and time-resolved fluorescence spectra of different allophycocyanins from Mastigocladus laminosus[J]. Biophysical Journal, 1990, 57: 133−145. doi: 10.1016/S0006-3495(90)82514-5
    [35]
    O’carra P, Murphy R F, Killilea S D. The native forms of the phycobilin chromophores of algal biliproteins. A clarification[J]. The Biochemical Journal, 1980, 187(2): 303−309. doi: 10.1042/bj1870303
    [36]
    Croce R, Van Amerongen H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7): 492−501. doi: 10.1038/nchembio.1555
    [37]
    Rodger A, Nordén B. Circular Dichroism and Linear Dichroism[M]. Oxford: Oxford University Press, 1996.
    [38]
    Sreerama N, Woody R W. Computation and analysis of protein circular dichroism spectra[J]. Methods in Enzymology, 2004, 383: 318−351.
    [39]
    Woody R W, Tinoco Jr I. Optical rotation of oriented helices. III. calculation of the rotatory dispersion and circular dichroism of the alpha- and 310-helix[J]. The Journal of Chemical Physics, 1967, 46(12): 4927−4945. doi: 10.1063/1.1840658
    [40]
    Bhalerao R P, Gillbro T, Gustafsson P. Functional phycobilisome core structures in a phycocyanin-less mutant of cyanobacterium Synechococcus sp. PCC 7942[J]. Photosynthesis Research, 1995, 45(1): 61−70. doi: 10.1007/BF00032236
    [41]
    Csatorday K, MacColl R, Csizmadia V, et al. Exciton interaction in allophycocyanin[J]. Biochemistry, 1984, 23(26): 6466−6470. doi: 10.1021/bi00321a029
    [42]
    Shiu Y J, Zhang J M, Hayashi M, et al. A transient absorption study of allophycocyanin[J]. Journal of Chemical Sciences, 2002, 114(6): 611−621. doi: 10.1007/BF02708855
    [43]
    Zhao Fuli, Zheng Xiguang, Zhang Jingmin, et al. Model of chromophore coupling in allophycocyanin aggregation[J]. Chinese Science Bulletin, 1998, 43(14): 1224−1229. doi: 10.1007/BF02883230
    [44]
    Donovan B, Walker L A, Yocum C F, et al. Transient absorption studies of the primary charge separation in photosystem II[J]. The Journal of Physical Chemistry, 1996, 100(5): 1945−1949. doi: 10.1021/jp951984v
    [45]
    Fleming G R, Cho M. Chromophore-solvent dynamics[J]. Annual Review of Physical Chemistry, 1996, 47(1): 109−134. doi: 10.1146/annurev.physchem.47.1.109
    [46]
    Bagchi B, Jana B. Solvation dynamics in dipolar liquids[J]. Chemical Society Reviews, 2010, 39(6): 1936−1954. doi: 10.1039/b902048a
    [47]
    Cong Peijun, Deuel H P, Simon J D. Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids[J]. Chemical Physics Letters, 1993, 212(3/4): 367−373.
    [48]
    Wong C Y, Alvey R M, Turner D B, et al. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting[J]. Nature Chemistry, 2012, 4(5): 396−404. doi: 10.1038/nchem.1302
    [49]
    Riter R R, Edington M D, Beck W F. Protein-matrix solvation dynamics in the α subunit of C-phycocyanin[J]. The Journal of Physical Chemistry, 1996, 100(33): 14198−14205. doi: 10.1021/jp960453j
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (247) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return