Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Li Shuanglin,Han Zhe,Liu Na, et al. A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms[J]. Haiyang Xuebao,2021, 43(7):1–10 doi: 10.12284/hyxb2021119
Citation: Li Shuanglin,Han Zhe,Liu Na, et al. A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms[J]. Haiyang Xuebao,2021, 43(7):1–10 doi: 10.12284/hyxb2021119

A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms

doi: 10.12284/hyxb2021119
Funds:  Funded by the Strategic Project of Chinese Academy of Science (Grant XDA19070402)
  • Received Date: 2020-12-31
  • Rev Recd Date: 2021-04-27
  • Available Online: 2021-06-16
  • Publish Date: 2021-07-25
  • Along with the global warming, the sea ice in the Arctic decreased rapidly, however the sea ice in the Antarctic has experienced a weak expansion. While many researchers are studying the mechanisms for this paradox in the Antarctic, the sea ice extent (SIE) began a rapid decline in 2016 and reached a record low in austral spring 2016. A rapid decrease of SIE anomaly occurred in December, with a 20.5% (2.13$ \times $106 km2) reduction compared with the long-term (1981−2010) mean (10.41$ \times $106 km2). It attracted a lot of attentions and scientists have investigated the causes of its occurrence from various aspects, such as the atmosphere circulations, the thermal state of the ocean, the polynya and so on. Their main results are summarized in this review. On the atmospheric aspect, the general circulation signals include a zonal height anomalies chain with wave number three during September and October, a Southern Annular Mode anomaly during November and December, and intensified cyclonic activity. The atmospheric zonal wave number three is modulated by the sea surface temperature anomalies in the tropical Pacific and Indian Ocean, and the Southern Annular Mode anomaly is mainly a result of downward weakening stratospheric polar vortex. On the ocean aspect, the upper ocean temperature is warmer than normal, and there is a large polynya in the Weddell Sea, which has the greatest area in the period of 1976−2016. However, it is difficult to identify the relative contributions of the external forcings of the climate system, the internal variability of the climate system, or their collaborative roles. We hope the summary can be useful to improve the understanding of the changes of Antarctic sea ice and its origins.
  • loading
  • [1]
    Simmonds I, Wu X R. Cyclone behaviour response to changes in winter southern hemisphere sea-ice concentration[J]. Quarterly Journal of the Royal Meteorological Society, 1993, 119(513): 1121−1148. doi: 10.1002/qj.49711951313
    [2]
    Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423. doi: 10.1073/pnas.1906556116
    [3]
    Bintanja R, Van Oldenborgh G J, Drijfhout S S, et al. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion[J]. Nature Geoscience, 2013, 6(5): 376−379. doi: 10.1038/ngeo1767
    [4]
    Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends[J]. Nature, 2016, 537(7618): 89−92. doi: 10.1038/nature19101
    [5]
    Steig E J. How fast will the Antarctic ice sheet retreat?[J]. Science, 2019, 364(6444): 936−937. doi: 10.1126/science.aax2626
    [6]
    Simmonds I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979−2013[J]. Annals of Glaciology, 2015, 56(69): 18−28. doi: 10.3189/2015AoG69A909
    [7]
    Turner J, Hosking J S, Bracegirdle T J, et al. Recent changes in Antarctic sea ice[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2015, 373(2045): 20140163. doi: 10.1098/rsta.2014.0163
    [8]
    Turner J, Bracegirdle T J, Phillips T, et al. An initial assessment of Antarctic sea ice extent in the CMIP5 models[J]. Journal of Climate, 2013, 26(5): 1473−1484. doi: 10.1175/JCLI-D-12-00068.1
    [9]
    Turner J, Phillips T, Marshall G J, et al. Unprecedented springtime retreat of Antarctic sea ice in 2016[J]. Geophysical Research Letters, 2017, 44(13): 6868−6875. doi: 10.1002/2017GL073656
    [10]
    Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018
    [11]
    Fetterer F, Knowles K, Meier W N, et al. Sea Ice Index, Version 3[R]. Boulder: National Snow and Ice Data Center, 2017.
    [12]
    Stuecker M F, Bitz C M, Armour K C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season[J]. Geophysical Research Letters, 2017, 44(17): 9008−9019. doi: 10.1002/2017GL074691
    [13]
    Meehl G A, Arblaster J M, Chung C T Y, et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016[J]. Nature Communications, 2019, 10(1): 14. doi: 10.1038/s41467-018-07865-9
    [14]
    Wang G M, Hendon H H, Arblaster J M, et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016[J]. Nature Communications, 2019, 10(1): 13. doi: 10.1038/s41467-41018-07689-41467
    [15]
    Scott R C, Nicolas J P, Bromwich D H, et al. Meteorological drivers and large-scale climate forcing of west antarctic surface melt[J]. Journal of Climate, 2019, 32(3): 665−684. doi: 10.1175/JCLI-D-18-0233.1
    [16]
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
    [17]
    van Loon H, Jenne R L. The zonal harmonic standing waves in the Southern Hemisphere[J]. Journal of Geophysical Research, 1972, 77(6): 992−1003. doi: 10.1029/JC077i006p00992
    [18]
    Raphael M N. The influence of atmospheric zonal wave three on Antarctic sea ice variability[J]. Journal of Geophysical Research, 2007, 112(D12): D12112. doi: 10.1029/2006JD007852
    [19]
    Kusahara K, Reid P, Williams G D, et al. An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016[J]. Environmental Research Letters, 2018, 13(8): 084020. doi: 10.1088/1748-9326/aad624
    [20]
    Marshall G J. Trends in the Southern Annular Mode from observations and reanalyses[J]. Journal of Climate, 2003, 16(24): 4134−4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
    [21]
    Son S W, Purich A, Hendon H H, et al. Improved seasonal forecast using ozone hole variability?[J]. Geophysical Research Letters, 2013, 40(23): 6231−6235. doi: 10.1002/2013GL057731
    [22]
    Kidston J, Scaife A A, Hardiman S C, et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather[J]. Nature Geoscience, 2015, 8(6): 433−440. doi: 10.1038/ngeo2424
    [23]
    Deb P, Dash M K, Dey S P, et al. Non-annular response of sea ice cover in the Indian sector of the Antarctic during extreme SAM events[J]. International Journal of Climatology, 2017, 37(2): 648−656. doi: 10.1002/joc.4730
    [24]
    Turner J, Guarino M V, Arnatt J, et al. Recent decrease of summer sea ice in the Weddell Sea, Antarctica[J]. Geophysical Research Letters, 2020, 47(11): e2020GL087127.
    [25]
    Jones D A, Simmonds I. A climatology of Southern Hemisphere extratropical cyclones[J]. Climate Dynamics, 1993, 9(3): 131−145. doi: 10.1007/BF00209750
    [26]
    Madden R A, Julian P R. Detection of a 40−50 day oscillation in the zonal wind in the tropical Pacific[J]. Journal of the Atmospheric Sciences, 1971, 28(5): 702−708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [27]
    Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40−50 day period[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1109−1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [28]
    Matthews A J, Hoskins B J, Masutani M. The global response to tropical heating in the Madden-Julian Oscillation during the northern winter[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(601): 1991−2011. doi: 10.1256/qj.02.123
    [29]
    Lee H J, Seo K H. Impact of the Madden-Julian Oscillation on Antarctic sea ice and its dynamical mechanism[J]. Scientific Reports, 2019, 9(1): 10761. doi: 10.1038/s41598-019-47150-3
    [30]
    Yuan X J. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms[J]. Antarctic Science, 2004, 16(4): 415−425. doi: 10.1017/S0954102004002238
    [31]
    Stammerjohn S E, Martinson D G, Smith R C, et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability[J]. Journal of Geophysical Research, 2008, 113(C3): C03S90.
    [32]
    Meehl G A, Arblaster J M, Bitz C M, et al. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability[J]. Nature Geoscience, 2016, 9(8): 590−595. doi: 10.1038/ngeo2751
    [33]
    Nuncio M, Yuan X J. The influence of the Indian Ocean Dipole on Antarctic sea ice[J]. Journal of Climate, 2015, 28(7): 2682−2690. doi: 10.1175/JCLI-D-14-00390.1
    [34]
    Li Xichen, Holland D M, Gerber E P, et al. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice[J]. Nature, 2014, 505(7484): 538−542. doi: 10.1038/nature12945
    [35]
    Simpkins G R, McGregor S, Taschetto A S, et al. Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends[J]. Journal of Climate, 2014, 27(13): 4923−4936. doi: 10.1175/JCLI-D-13-00615.1
    [36]
    Lu B, Ren H L, Scaife A A, et al. An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability[J]. Climate Dynamics, 2018, 51(1/2): 89−100.
    [37]
    Trewin B, Ganter C. Seasonal climate summary for the southern hemisphere (spring 2016): Strong negative Indian Ocean Dipole ends, bringing second wettest September to Australia[J]. Journal of Southern Hemisphere Earth Systems Science, 2020, 69(1): 273−289.
    [38]
    Lau N C, Nath M J. The role of the “Atmospheric Bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies[J]. Journal of Climate, 1996, 9(9): 2036−2057. doi: 10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2
    [39]
    Li Z X. Influence of tropical Pacific El Niño on the SST of the Southern Ocean through atmospheric bridge[J]. Geophysical Research Letters, 2000, 27(21): 3505−3508. doi: 10.1029/1999GL011182
    [40]
    Stuecker M F, Jin F F, Timmermann A, et al. Combination mode dynamics of the anomalous northwest Pacific anticyclone[J]. Journal of Climate, 2015, 28(3): 1093−1111. doi: 10.1175/JCLI-D-14-00225.1
    [41]
    Yuan X J, Kaplan M R, Cane M A. The interconnected global climate system-A review of tropical-polar teleconnections[J]. Journal of Climate, 2018, 31(15): 5765−5792. doi: 10.1175/JCLI-D-16-0637.1
    [42]
    Karoly D J. Southern hemisphere circulation features associated with El Niño-Southern oscillation events[J]. Journal of Climate, 1989, 2(11): 1239−1252. doi: 10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2
    [43]
    Turner J. The El Niño-southern oscillation and Antarctica[J]. International Journal of Climatology, 2004, 24(1): 1−31. doi: 10.1002/joc.965
    [44]
    Liu J P, Yuan X J, Rind D, et al. Mechanism study of the ENSO and southern high latitude climate teleconnections[J]. Geophysical Research Letters, 2002, 29(14): 1679.
    [45]
    Purich A, England M H. Tropical teleconnections to Antarctic sea ice during austral spring 2016 in coupled pacemaker experiments[J]. Geophysical Research Letters, 2019, 46(12): 6848−6858. doi: 10.1029/2019GL082671
    [46]
    Ding Q H, Steig E J, Battisti D S, et al. Influence of the tropics on the Southern Annular Mode[J]. Journal of Climate, 2012, 25(18): 6330−6348. doi: 10.1175/JCLI-D-11-00523.1
    [47]
    Lecomte O, Goosse H, Fichefet T, et al. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea[J]. Nature Communications, 2017, 8(1): 258. doi: 10.1038/s41467-017-00347-4
    [48]
    Comiso J C, Gordon A L. Recurring polynyas over the Cosmonaut Sea and the Maud Rise[J]. Journal of Geophysical Research, 1987, 92(C3): 2819−2833. doi: 10.1029/JC092iC03p02819
    [49]
    Campbell E C, Wilson E A, Moore G W K, et al. Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies[J]. Nature, 2019, 570(7761): 319−325. doi: 10.1038/s41586-019-1294-0
    [50]
    Jena B, Ravichandran M, Turner J. Recent reoccurrence of large open-ocean polynya on the Maud Rise seamount[J]. Geophysical Research Letters, 2019, 46(8): 4320−4329. doi: 10.1029/2018GL081482
    [51]
    Swart S, Campbell E C, Heuze C H, et al. Return of the Maud Rise polynya: Climate litmus or sea ice anomaly? [in "State of the Climate in 2017"][J]. Bulletin of the American Meteorological Society, 2018, 99(8): S188−S189.
    [52]
    Wang Z M, Turner J, Wu Yang, et al. Rapid decline of total Antarctic sea ice extent during 2014−16 controlled by wind-driven sea ice drift[J]. Journal of Climate, 2019, 32(17): 5381−5395. doi: 10.1175/JCLI-D-18-0635.1
    [53]
    Matear R J, O'Kane T J, Risbey J S, et al. Sources of heterogeneous variability and trends in Antarctic sea-ice[J]. Nature Communications, 2015, 6(1): 8656. doi: 10.1038/ncomms9656
    [54]
    Easterling D R, Wehner M F. Is the climate warming or cooling?[J]. Geophysical Research Letters, 2009, 36(8): L08706. doi: 10.1029/2009gl037810
    [55]
    Schmidt G A, Shindell D T, Tsigaridis K. Reconciling warming trends[J]. Nature Geoscience, 2014, 7(3): 158−160. doi: 10.1038/ngeo2105
    [56]
    Zhang C, Li S L, Luo F F, et al. The global warming hiatus has faded away: An analysis of 2014−2016 global surface air temperatures[J]. International Journal of Climatology, 2019, 39(12): 4853−4868. doi: 10.1002/joc.6114
    [57]
    Zhang C, Luo J J, Li S L. Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña[J]. Geophysical Research Letters, 2019, 46(6): 3435−3445. doi: 10.1029/2019GL082280
    [58]
    张超, 李双林. 为什么2014年没有发展成强El Niño[J]. 科学通报, 2015, 60(20): 1941−1951. doi: 10.1360/N972015-00128

    Zhang Chao, Li Shuanglin. Why is the El Niño event during the 2014 winter not a strong one?[J]. Chinese Science Bulletin, 2015, 60(20): 1941−1951. doi: 10.1360/N972015-00128
    [59]
    Zhang C, Li S L, Wan J H. The warmest year 2015 in the instrumental record and its comparison with year 1998[J]. Atmospheric and Oceanic Science Letters, 2016, 9(6): 487−494. doi: 10.1080/16742834.2016.1237255
    [60]
    Dong L, Zhou T J, Chen X L. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols[J]. Geophysical Research Letters, 2014, 41(23): 8570−8577. doi: 10.1002/2014GL062269
    [61]
    Lim E P, Hendon H H. Causes and predictability of the negative Indian Ocean Dipole and its impact on La Niña during 2016[J]. Scientific Reports, 2017, 7(1): 12619. doi: 10.1038/s41598-017-12674-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (487) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return