Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Hao Guanghua,Shen Hui,Tian Zhongxiang, et al. The characteristics of sea ice and atmospheric factors over the high latitude Arctic region[J]. Haiyang Xuebao,2021, 43(7):90–99 doi: 10.12284/hyxb2021117
Citation: Hao Guanghua,Shen Hui,Tian Zhongxiang, et al. The characteristics of sea ice and atmospheric factors over the high latitude Arctic region[J]. Haiyang Xuebao,2021, 43(7):90–99 doi: 10.12284/hyxb2021117

The characteristics of sea ice and atmospheric factors over the high latitude Arctic region

doi: 10.12284/hyxb2021117
  • Received Date: 2021-02-09
  • Rev Recd Date: 2021-03-29
  • Available Online: 2021-06-03
  • Publish Date: 2021-07-25
  • The evolution of atmospheric factors and sea ice growth of the Arctic high latitude region process are analyzed based on the data observed by the drifting automatic weather station over the period from August 2018 to May 2019. The evolution shows two different phases according to the sea ice drifting trajectory. The sea ice mainly drifted to the southeast in the first phase and drifted to the northeast in the second phase. The averaged air temperature and averaged relative humidity are −6.6℃ and 93% for the first phase and those are −29.3℃ and 76% for the second phase. The averaged pressure is higher in the second than that in the first phase. The sea ice drifting trajectory are mainly affected by the Beaufort High. The sea ice velocity from automatic weather station derived and NSIDC (National Snow and Ice Data Center) are compared and the result show that the zonal velocity is unanimous. The sea ice is mainly melting in the first and sea ice thickness show decrease in the first phase. The sea ice growth rate is −0.11 cm/d in August. The sea ice growth mainly occurs in the second phase. The sea ice growth rate is larger than 0.9 cm/d from January to March 2019. The largest monthly averaged sea ice growth rate is in March with the value of 1.1 cm/d and the sea ice keep growth until the end of the observation period.
  • loading
  • [1]
    Guemas V, Blanchard-Wrigglesworth E, Chevallier M, et al. A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 546−561. doi: 10.1002/qj.2401
    [2]
    Olsen M S, Callaghan T V, Reist J D, et al. The changing Arctic cryosphere and likely consequences: An overview[J]. Ambio, 2011, 40(S1): 111−118. doi: 10.1007/s13280-011-0220-y
    [3]
    Bekryaev R V, Polyakov I V, Alexeev V A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming[J]. Journal of Climate, 2010, 23(14): 3888−3906. doi: 10.1175/2010JCLI3297.1
    [4]
    Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334−1337. doi: 10.1038/nature09051
    [5]
    Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96.
    [6]
    Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic sea ice cover: Results from different techniques[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6883−6900. doi: 10.1002/2017JC012768
    [7]
    Lee H J, Kwon M O, Yeh S W, et al. Impact of poleward moisture transport from the North Pacific on the acceleration of sea ice loss in the Arctic since 2002[J]. Journal of Climate, 2017, 30(17): 6757−6769. doi: 10.1175/JCLI-D-16-0461.1
    [8]
    Kinnard C, Zdanowicz C M, Fisher D A, et al. Reconstructed changes in Arctic sea ice over the past 1450 years[J]. Nature, 2011, 479(7374): 509−512. doi: 10.1038/nature10581
    [9]
    Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
    [10]
    Comiso J C, Hall D K. Climate trends in the Arctic as observed from space[J]. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5(3): 389−409. doi: 10.1002/wcc.277
    [11]
    李珵, 苏洁, 魏立新, 等. 北极中央区海冰低密集度现象研究[J]. 海洋学报, 2018, 40(11): 33−45.

    Li Cheng, Su Jie, Wei Lixin, et al. Exploration of anomalous low sea ice concentration phenomenon in the Central Arctic[J]. Haiyang Xuebao, 2018, 40(11): 33−45.
    [12]
    卞林根, 高志球, 陆龙骅, 等. 北冰洋夏季开阔洋面和浮冰近地层热量平衡参数的观测估算[J]. 中国科学(D辑: 地球科学), 2003, 46(6): 580−591. doi: 10.1007/BF02984536

    Bian Lingen, Gao Zhiqiu, Lu Longhua, et al. Observational estimation of heat budgets on drifting ice and open water over the Arctic Ocean[J]. Science in China Series D: Earth Sciences, 2003, 46(6): 580−591. doi: 10.1007/BF02984536
    [13]
    王杰, 郭井学, 王华军, 等. 中国第四次北极科学考察EM31-ICE走航海冰厚度数据分析[J]. 极地研究, 2012, 24(1): 47−52.

    Wang Jie, Guo Jingxue, Wang Huajun, et al. Data analysis of shipborne EM31-ICE measuring in the fourth Chinese national Arctic research expedition[J]. Chinese Journal of Polar Research, 2012, 24(1): 47−52.
    [14]
    郝光华, 赵杰臣, 李春花, 等. 2017年夏季北极中央航道海冰观测特征及海冰密集度遥感产品评估[J]. 海洋学报, 2018, 40(11): 54−63.

    Hao Guanghua, Zhao Jiechen, Li Chunhua, et al. The sea ice observations and assessment of satellite sea-ice concentration along the central Arctic passage in summer 2017[J]. Haiyang Xuebao, 2018, 40(11): 54−63.
    [15]
    Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8): 8501. doi: 10.1029/2012GL051432
    [16]
    Perovich D K, Jones K F, Light B, et al. Solar partitioning in a changing Arctic sea-ice cover[J]. Annals of Glaciology, 2011, 52(57): 192−196. doi: 10.3189/172756411795931543
    [17]
    卞林根, 丁明虎, 林祥, 等. 北冰洋中心区夏季大气边界层结构特征及其与海冰范围变化的关系[J]. 中国科学: 地球科学, 2016, 59(5): 1057−1065. doi: 10.1007/s11430-015-5238-8

    Bian Lingen, Ding Minghu, Lin Xiang, et al. Structure of summer atmospheric boundary layer in the center of Arctic Ocean and its relation with sea ice extent change[J]. Science China Earth Sciences, 2016, 59(5): 1057−1065. doi: 10.1007/s11430-015-5238-8
    [18]
    Taskjelle T, Hudson S R, Granskog M A, et al. Spectral albedo and transmittance of thin young Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 540−553. doi: 10.1002/2015JC011254
    [19]
    Hao Guanghua, Su Jie, Vihma T, et al. Trends, abrupt shifts and interannual variability of the Arctic wintertime seasonal sea ice from 1979 to 2019[J]. Annals of Glaciology, 2020, 61(83): 441−453.
    [20]
    Zhang Jinlun, Lindsay R, Schweiger A, et al. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat[J]. Geophysical Research Letters, 2013, 40(4): 720−726. doi: 10.1002/grl.50190
    [21]
    Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): 28. doi: 10.1029/2012GL052676
    [22]
    Long Mengyuan, Zhang Lujun, Hu Siyu, et al. Multi-aspect Assessment of CMIP6 models for Arctic sea ice simulation[J]. Journal of Climate, 2020, 34(4): 1−37.
    [23]
    Kern S, Khvorostovsky K, Skourup H, et al. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise[J]. The Cryosphere, 2015, 9(1): 37−52. doi: 10.5194/tc-9-37-2015
    [24]
    Li Mengmeng, Ke Changqing, Xie Hongjie, et al. Arctic sea ice thickness retrievals from CryoSat-2: seasonal and interannual comparisons of three different products[J]. International Journal of Remote Sensing, 2020, 41(1): 152−170. doi: 10.1080/01431161.2019.1637961
    [25]
    Uttal T, Curry J A, Mcphee M G, et al. Surface heat budget of the Arctic ocean[J]. Bulletin of the American Meteorological Society, 2002, 83(2): 255−276. doi: 10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2
    [26]
    Dethloff K, Tjernström M, Shupe M, et al. Multidisciplinary drifting Observatory for the Study of Arctic Climate MOSAIC and PARMARCMIP[C]//DFG Arctic Amplification Workshop, DFG. 2013.
    [27]
    Wei Zexun, Chen Hongxia, Lei Ruibo, et al. Overview of the 9th Chinese National Arctic research expedition[J]. Atmospheric and Oceanic Science Letters, 2020, 13(1): 1−7. doi: 10.1080/16742834.2020.1675137
    [28]
    Tschudi M A, Meier W N, Stewart J S. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)[J]. The Cryosphere, 2020, 14(5): 1519−1536. doi: 10.5194/tc-14-1519-2020
    [29]
    Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553−597. doi: 10.1002/qj.828
    [30]
    卞林根, 王继志, 孙玉龙, 等. 北冰洋中心区海冰漂流与大气过程[J]. 海洋学报, 2014, 36(10): 48−55.

    Bian Lingen, Wang Jizhi, Sun Yulong, et al. Sea ice drifting and atmospheric processes over the central Arctic Ocean[J]. Haiyang Xuebao, 2014, 36(10): 48−55.
    [31]
    郝光华, 杨清华, 赵杰臣, 等. 2016年南极中山站固定冰冰厚观测分析[J]. 海洋学报, 2019, 41(9): 26−39.

    Hao Guanghua, Yang Qinghua, Zhao Jiechen, et al. Observation and analysis of landfast ice arounding Zhongshan Station, Antarctic in 2016[J]. Haiyang Xuebao, 2019, 41(9): 26−39.
    [32]
    Xiu Yuanren, Li Zhijun, Lei Ruibo, et al. Comparisons of passive microwave remote sensing sea ice concentrations with ship-based visual observations during the CHINARE Arctic summer cruises of 2010–2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 38−49. doi: 10.1007/s13131-020-1646-5
    [33]
    Lei Ruibo, Li Na, Heil P, et al. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2014, 119(1): 537−547. doi: 10.1002/2012JC008731
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (382) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return