Citation: | Wang Weizheng,Yang Lintong,Yang Erjun, et al. Transcription level of immune related genes of juvenile cobia (Rachycentron canadum) under hypoxia stress[J]. Haiyang Xuebao,2021, 43(9):92–101 doi: 10.12284/hyxb2021116 |
[1] |
Mogensen T H. Pathogen recognition and inflammatory signaling in innate immune defenses[J]. Clinical Microbiology Reviews, 2009, 22(2): 240−273. doi: 10.1128/CMR.00046-08
|
[2] |
甘桢, 王蓓, 鲁义善, 等. 罗非鱼免疫学研究进展[J]. 生物技术通报, 2014(11): 32−39.
Gan Zhen, Wang Bei, Lu Yishan, et al. Research progress on tilapia immunology[J]. Biotechnology Bulletin, 2014(11): 32−39.
|
[3] |
周光炎. 免疫学原理[M]. 3版. 北京: 科学出版社, 2013.
Zhou Guangyan. Principles of Immunology[M]. 3rd ed. Beijing: Science Press, 2013.
|
[4] |
Press C M L, Evensen Ø. The morphology of the immune system in teleost fishes[J]. Fish & Shellfish Immunology, 1999, 9(4): 309−318.
|
[5] |
Salinas I. The mucosal immune system of teleost fish[J]. Biology, 2015, 4(3): 525−539. doi: 10.3390/biology4030525
|
[6] |
Rombout J H W M, Abelli L, Picchietti S, et al. Teleost intestinal immunology[J]. Fish & Shellfish Immunology, 2011, 31(5): 616−626.
|
[7] |
Parker G A, Picut C A. Liver immunobiology[J]. Toxicologic Pathology, 2005, 33(1): 52−62. doi: 10.1080/01926230590522365
|
[8] |
Zapata A, Diez B, Cejalvo T, et al. Ontogeny of the immune system of fish[J]. Fish & Shellfish Immunology, 2006, 20(2): 126−136.
|
[9] |
Secombes C J, Hardie L J, Daniels G. Cytokines in fish: an update[J]. Fish & Shellfish Immunology, 1996, 6(4): 291−304.
|
[10] |
Nur I, Abdelkhalek N K, Motobe S, et al. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp[J]. Molecular Immunology, 2016, 70: 1−7. doi: 10.1016/j.molimm.2015.11.010
|
[11] |
Wang Rujia, Feng Jianbin, Li Chao, et al. Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection[J]. Fish & Shellfish Immunology, 2013, 35(1): 136−145.
|
[12] |
Nam S E, Haque M N, Shin Y K, et al. Constant and intermittent hypoxia modulates immunity, oxidative status, and blood components of red seabream and increases its susceptibility to the acute toxicity of red tide dinoflagellate[J]. Fish & Shellfish Immunology, 2020, 105: 286−296.
|
[13] |
Abdel-Tawwab M, Hagras A E, Elbaghdady H A M, et al. Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity[J]. Aquaculture International, 2015, 23(5): 1261−1274. doi: 10.1007/s10499-015-9882-y
|
[14] |
Kvamme B O, Gadan K, Finne-Fridell F, et al. Modulation of innate immune responses in Atlantic salmon by chronic hypoxia-induced stress[J]. Fish & Shellfish Immunology, 2013, 34(1): 55−65.
|
[15] |
Ortuño J, Esteban M A, Meseguer J. Lack of effect of combining different stressors on innate immune responses of seabream (Sparus aurata L.)[J]. Veterinary Immunology and Immunopathology, 2002, 84(1/2): 17−27.
|
[16] |
Molina W F, Benetti D D, Fiorentino J N, et al. Early sex shape dimorphism (SShD) in Rachycentron canadum (Linnaeus, 1766) and its applications for monosex culture[J]. Aquaculture, 2018, 495: 320−327. doi: 10.1016/j.aquaculture.2018.05.056
|
[17] |
Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2020[R/OL]. [2021−01−15]. https://creativecommons.org/licenses/by-nc-sa/3.0/igo
|
[18] |
Han Yingli, Hou Congcong, Du Chen, et al. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection[J]. Fish & Shellfish Immunology, 2017, 60: 299−310.
|
[19] |
Kong Yidi, Gao Chunshan, Du Xiaoyan, et al. Effects of single or conjoint administration of lactic acid bacteria as potential probiotics on growth, immune response and disease resistance of snakehead fish (Channa argus)[J]. Fish & Shellfish Immunology, 2020, 102: 412−421.
|
[20] |
Sanchez-Muñoz F, Dominguez-Lopez A, Yamamoto-Furusho J K. Role of cytokines in inflammatory bowel disease[J]. World Journal of Gastroenterology, 2008, 14(27): 4280−4288. doi: 10.3748/wjg.14.4280
|
[21] |
Mérour E, Jami R, Lamoureux A, et al. A20 (tnfaip3) is a negative feedback regulator of RIG-I-Mediated IFN induction in teleost[J]. Fish & Shellfish Immunology, 2019, 84: 857−864.
|
[22] |
An Feimeng, Wang Jiaqi, Gao Hongyan, et al. Impact of IL1R1 and IL1R2 gene polymorphisms on risk of osteonecrosis of the femoral head from a case-control study[J]. Molecular Genetics & Genomic Medicine, 2019, 7(3): e00557.
|
[23] |
Ding Yang, Ao Jingqun, Chen Xinhua. Comparative study of interleukin-17C (IL-17C) and IL-17D in large yellow croaker Larimichthys crocea reveals their similar but differential functional activity[J]. Developmental & Comparative Immunology, 2017, 76: 34−44.
|
[24] |
Song Linsheng, Wu Longtao, Ni Duojiao, et al. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress[J]. Fish & Shellfish Immunology, 2006, 21(4): 335−345.
|
[25] |
Mu Weijie, Wen Haishen, Li Jifang, et al. Cloning and expression analysis of a HSP70 gene from Korean rockfish (Sebastes schlegeli)[J]. Fish & Shellfish Immunology, 2013, 35(4): 1111−1121.
|
[26] |
矫婉莹. 镉和毒死蜱暴露导致鲤鱼鳃免疫损伤机理的研究[D]. 哈尔滨: 东北农业大学, 2019.
Jiao Wanying. The study on the mechanism of immune injury induced by cadmium and chlorpyrifos exposure in common carp gills[D]. Harbin: Northeast Agricultural University, 2019.
|
[27] |
董忠典, 黎学友, 廖健, 等. 雌、雄弓背青鳉(Oryzias curvinotus)肝脏转录组比较分析[J]. 海洋与湖沼, 2020, 51(5): 1203−1213.
Dong Zhongdian, Li Xueyou, Liao Jian, et al. Comparative transcriptome analysis of male and female liver of Oryzias curvinotus[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1203−1213.
|
[28] |
Freitas-Lopes M A, Mafra K, David B A, et al. Differential location and distribution of hepatic immune cells[J]. Cells, 2017, 6(4): 48. doi: 10.3390/cells6040048
|
[29] |
王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J]. 海洋学报, 2021, 43(2): 49−58.
Wang Weizheng, Zeng Zeqian, Huang Jiansheng, et al. Hypoxia stress on growth, serum biochemical and non-specific immune indexes of juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2021, 43(2): 49−58.
|
[30] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124−130. doi: 10.3969/j.issn.2095-0780.2017.01.016
Chen Shixi, Wang Pengfei, Ou Youjun, et al. Acute and chronic hypoxia effect on gills of golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2017, 13(1): 124−130. doi: 10.3969/j.issn.2095-0780.2017.01.016
|
[31] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1049−1058.
Chen Shixi, Wang Pengfei, Ou Youjun, et al. The effect of acute and chronic hypoxia stress on liver tissue structure and oxidation in juvenile golden pompano (Trachinotus ovatus)[J]. Chinese Journal of Zoology, 2016, 51(6): 1049−1058.
|
[32] |
Zhang Xiaoyan, Wen Haishen, Wang Hailiang, et al. RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus)[J]. PLoS One, 2017, 12(3): e0173238. doi: 10.1371/journal.pone.0173238
|
[33] |
Parra D, Korytář T, Takizawa F, et al. B cells and their role in the teleost gut[J]. Developmental & Comparative Immunology, 2016, 64: 150−166.
|
[34] |
Sundh H, Kvamme B O, Fridell F, et al. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator[J]. BMC Physiology, 2010, 10: 22. doi: 10.1186/1472-6793-10-22
|
[35] |
Xavier R J, Podolsky D K. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427−434. doi: 10.1038/nature06005
|
[36] |
Maloy K J, Antonelli L R V, Lefevre M, et al. Cure of innate intestinal immune pathology by CD4+ CD25+ regulatory T cells[J]. Immunology Letters, 2005, 97(2): 189−192. doi: 10.1016/j.imlet.2005.01.004
|
[37] |
Wang Weizheng, Huang Jiansheng, Zhang Jiandong, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
|
[38] |
Niklasson L, Sundh H, Fridell F, et al. Disturbance of the intestinal mucosal immune system of farmed Atlantic salmon (Salmo salar), in response to long-term hypoxic conditions[J]. Fish & Shellfish Immunology, 2011, 31(6): 1072−1080.
|
[39] |
Lieschke G J, Trede N S. Fish immunology[J]. Current Biology, 2009, 19(16): R678−R682. doi: 10.1016/j.cub.2009.06.068
|
[40] |
Wluka A, Olszewski W L. Innate and adaptive processes in the spleen[J]. Annals of Transplantation, 2006, 11(4): 22−29.
|
[41] |
Mu Yinnan, Li Wanru, Wu Bin, et al. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology, 2020, 98: 738−747.
|