Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Xu Qiaohui,Zhang Yanmin,Wang Yunhua. Ocean wave inversion based on the velocity bunching modulation of SAR image[J]. Haiyang Xuebao,2021, 43(12):111–121 doi: 10.12284/hyxb2021103
Citation: Xu Qiaohui,Zhang Yanmin,Wang Yunhua. Ocean wave inversion based on the velocity bunching modulation of SAR image[J]. Haiyang Xuebao,2021, 43(12):111–121 doi: 10.12284/hyxb2021103

Ocean wave inversion based on the velocity bunching modulation of SAR image

doi: 10.12284/hyxb2021103
  • Received Date: 2020-10-29
  • Rev Recd Date: 2021-05-24
  • Available Online: 2021-12-09
  • Publish Date: 2021-12-30
  • The effects of three kinds of modulation (the tilt modulation, the hydrodynamic modulation and the velocity bunching modulation) on sea wave SAR (synthetic aperture radar) image are compared and analyzed firstly. The results show that the velocity bunching modulation has the most significant effect on SAR images. In addition, due to the inherent speckle noise in the SAR image, it is difficult to filter or suppress the noise in the range of low wavenumber. And the inversion of wave spectrum by classical MPI (max-planck institute) method will result in the larger spectral value in the range of low wavenumber. Referring to the classical MPI inversion algorithm, an azimuth slope spectrum and SWH (significant wave height) inversion algorithm based on the velocity bunching modulation are proposed in this paper. Comparing the SWH obtained by the classical MPI method, the co-polarization modulation method and the algorithm proposed in this paper with the buoy data, one can find that the mean square error between the SWH retrieved by the algorithm proposed in this paper and the SWH obtained from buoy data is 0.79 m, which is the smallest among the three methods.
  • loading
  • [1]
    Alpers W R, Ross D B, Rufenach C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1981, 86(C7): 6481−6498. doi: 10.1029/JC086iC07p06481
    [2]
    Hasselmann K, Raney R K, Plant W J, et al. Theory of synthetic aperture radar ocean imaging: A MARSEN view[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4659−4686. doi: 10.1029/JC090iC03p04659
    [3]
    Lyzenga D R, Shuchman R A, Lyden J D, et al. SAR imaging of waves in water and ice: Evidence for velocity bunching[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 1031−1036. doi: 10.1029/JC090iC01p01031
    [4]
    Alpers W, Rufenach C. The effect of orbital motions on synthetic aperture radar imagery of ocean waves[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(5): 685−690. doi: 10.1109/TAP.1979.1142163
    [5]
    Engen G, Johnsen H, Krogstad H E, et al. Directional wave spectra by inversion of ERS-1 synthetic aperture radar ocean imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(2): 340−352. doi: 10.1109/36.295049
    [6]
    Jacobsen S, Høgda K A. Estimation of the real aperture radar modulation transfer function directly from synthetic aperture radar ocean wave image spectra without a priori knowledge of the ocean wave height spectrum[J]. Journal of Geophysical Research: Oceans, 1994, 99(C7): 14291−14302. doi: 10.1029/94JC00633
    [7]
    Brüning C. The impact of the ocean wave-radar modulation transfer function on the inversion of ERS-1 SAR image spectra into ocean wave spectra[C]//Proceedings of IGARSS ’94−1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, USA: IEEE, 1994: 2032−2034.
    [8]
    Alpers W, Schmidt A, Schmidt R, et al. A comparison of ocean wave-radar modulation transfer functions at different radar frequencies and polarizations determined from tower and aircraft measurements[C]//1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications. Firenze, Italy: IEEE, 1995: 1087−1089.
    [9]
    Hasselmann K, Hasselmann S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion[J]. Journal of Geophysical Research: Oceans, 1991, 96(C6): 10713−10729. doi: 10.1029/91JC00302
    [10]
    Brüning C, Schmidt R, Alpers W. Estimation of the ocean wave-radar modulation transfer function from synthetic aperture radar imagery[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 9803−9815. doi: 10.1029/93JC03373
    [11]
    Hasselmann S, Brüning C, Hasselmann K, et al. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans, 1996, 101(C7): 16615−16629. doi: 10.1029/96JC00798
    [12]
    Mastenbroek C, De Valk C F. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3497−3516. doi: 10.1029/1999JC900282
    [13]
    Schulz-Stellenfleth J, Lehner S, Hoja D. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05004.
    [14]
    Zhang Biao, Perrie W, He Yijun. Validation of RADARSAT-2 fully polarimetric SAR measurements of ocean surface waves[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06031.
    [15]
    He Yijun, Perrie W, Xie Tao, et al. Ocean wave spectra from a linear polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2623−2631. doi: 10.1109/TGRS.2004.836813
    [16]
    He Yijun, Shen Hui, Perrie W. Remote sensing of ocean waves by polarimetric SAR[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(12): 1768−1773. doi: 10.1175/JTECH1948.1
    [17]
    Schulz-Stellenfleth J, König T, Lehner S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03019.
    [18]
    Li Xiaoming, Lehner S, Bruns T. Ocean wave integral parameter measurements using Envisat ASAR wave mode data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 155−174. doi: 10.1109/TGRS.2010.2052364
    [19]
    Stopa J E, Mouche A. Significant wave heights from Sentinel-1 SAR: Validation and applications[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1827-1848.
    [20]
    Pleskachevsky A L, Rosenthal W, Lehner S. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 464−484. doi: 10.1016/j.isprsjprs.2016.02.001
    [21]
    Romeiser R, Graber H C, Caruso M J, et al. A new approach to ocean wave parameter estimates from C-band scanSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1320−1345. doi: 10.1109/TGRS.2014.2337663
    [22]
    Shao Weizeng, Zhang Zheng, Li Xiaofeng, et al. Ocean wave parameters retrieval from Sentinel-1 SAR imagery[J]. Remote Sensing, 2016, 8(9): 707. doi: 10.3390/rs8090707
    [23]
    Grieco G, Lin Wenming, Migliaccio M, et al. Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed[J]. International Journal of Remote Sensing, 2016, 37(21): 5086−5104. doi: 10.1080/01431161.2016.1226525
    [24]
    Shao Weizeng, Jiang Xingwei, Nunziata F, et al. Analysis of waves observed by synthetic aperture radar across ocean fronts[J]. Ocean Dynamics, 2020, 70(11): 1397−1407. doi: 10.1007/s10236-020-01403-2
    [25]
    Shao Weizeng, Hu Y Y, Zheng G, et al. Sea state parameters retrieval from cross-polarization Gaofen-3 SAR data[J]. Advances in Space Research, 2020, 65(3): 1025−1034. doi: 10.1016/j.asr.2019.10.034
    [26]
    Wright J. A new model for sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 217−223. doi: 10.1109/TAP.1968.1139147
    [27]
    Lyzenga D R. Numerical simulation of synthetic aperture radar image spectra for ocean waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(6): 863−872. doi: 10.1109/TGRS.1986.289701
    [28]
    Keller W C, Wright J W. Microwave scattering and the straining of wind-generated waves[J]. Radio Science, 1975, 10(2): 139−147. doi: 10.1029/RS010i002p00139
    [29]
    Arsenault H H, April G. Properties of speckle integrated with a finite aperture and logarithmically transformed[J]. Journal of the Optical Society of America, 1976, 66(11): 1160−1163. doi: 10.1364/JOSA.66.001160
    [30]
    Lee J S. Speckle analysis and smoothing of synthetic aperture radar images[J]. Computer Graphics and Image Processing, 1981, 17(1): 24−32. doi: 10.1016/S0146-664X(81)80005-6
    [31]
    Lee J S. Speckle suppression and analysis for synthetic aperture radar images[J]. Optical Engineering, 1986, 25(5): 636−646. doi: 10.1117/12.7973877
    [32]
    Lee J S, Jurkevich L, Dewaele P, et al. Speckle filtering of synthetic aperture radar images: A review[J]. Remote Sensing Reviews, 1994, 8(4): 313−340. doi: 10.1080/02757259409532206
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (388) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return