Citation: | Xu Wei,Liu Bilin,Chen Xinjun, et al. Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)[J]. Haiyang Xuebao,2021, 43(6):90–97 doi: 10.12284/hyxb2021102 |
[1] |
Jereb P, Roper C F E. Cephalopods of the World: an Annotated and Illustrated Catalogue of Cephalopod Species Known to Date[M]. Rome: FAO, 2010: 315−318.
|
[2] |
Keyl F, Argüelles J, Mariátegui L, et al. A hypothesis on range expansion and spatio-temporal shifts in size-at-maturity of jumbo squid (Dosidicus gigas) in the eastern Pacific Ocean[J]. California Cooperative Oceanic Fisheries Investigations Report, 2008, 49: 119−128.
|
[3] |
Zeidberg L D, Robison B H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 104(31): 12948−12950.
|
[4] |
Waluda C M, Yamashiro C, Rodhouse P G. Influence of the ENSO cycle on the light-fishery for Dosidicus gigas in the Peru Current: an analysis of remotely sensed data[J]. Fisheries Research, 2006, 79(1/2): 56−63.
|
[5] |
Argüelles J, Rodhouse P G, Villegas P, et al. Age, growth and population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters[J]. Fisheries Research, 2001, 54(1): 51−61. doi: 10.1016/S0165-7836(01)00380-0
|
[6] |
Liu Bilin, Chen Xinjun, Chen Yong, et al. Geographic variation in statolith trace elements of the Humboldt squid, Dosidicus gigas, in high seas of Eastern Pacific Ocean[J]. Marine Biology, 2013, 160(11): 2853−2862. doi: 10.1007/s00227-013-2276-7
|
[7] |
Taipe A, Yamashiro C, Mariategui L, et al. Distribution and concentrations of jumbo flying squid (Dosidicus gigas) off the Peruvian coast between 1991 and 1999[J]. Fisheries Research, 2001, 54(1): 21−32. doi: 10.1016/S0165-7836(01)00377-0
|
[8] |
Nicol J A C. The Eyes of Fishes[M]. Oxford: Oxford University Press, 1989.
|
[9] |
Horwitz J. The function of alpha-crystallin[J]. Investigative Ophthalmology & Visual Science, 1993, 34(1): 10−22.
|
[10] |
Gillanders B M. Trace metals in four structures of fish and their use for estimates of stock structure[J]. Fishery Bulletin-National Oceanic and Atmospheric Administration, 2001, 99(3): 410−419.
|
[11] |
Ferenbaugh J K. Elemental analysis of otoliths and eye lenses in the assessment of Steller Sea lion diets[D]. Texas: Texas Tech University, 2007.
|
[12] |
Liu Bilin, Chen Xinjun, Chen Yong, et al. Trace elements in the statoliths of jumbo flying squid off the Exclusive Economic Zones of Chile and Peru[J]. Marine Ecology: Progress Series, 2011, 429: 93−101. doi: 10.3354/meps09106
|
[13] |
Ikeda Y, Arai N, Sakamoto W, et al. Relationship between statoliths and environmental variables in cephalopod[J]. International Journal of PIXE, 1996, 6(1/2): 339−345.
|
[14] |
Arkhipkin A I, Campana S E, Fitzgerald J, et al. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(7): 1212−1224. doi: 10.1139/f04-075
|
[15] |
Yatsu A, Mochioka N, Morishita K, et al. Strontium/calcium ratios in statoliths of the neon flying squid, Ommastrephes bartrami (Cephalopoda), in the North Pacific Ocean[J]. Marine Biology, 1998, 131(2): 275−282. doi: 10.1007/s002270050320
|
[16] |
Doubleday Z A, Pecl G T, Semmens J M, et al. Stylet elemental signatures indicate population structure in a holobenthic octopus species, Octopus pallidus[J]. Marine Ecology Progress Series, 2008, 371: 1−10. doi: 10.3354/meps07722
|
[17] |
Napoleão P, Pinheiro T, Reis C S. Element characterization of the vestigial shell of Octopus vulgaris Cuvier, 1797[J]. Boletín, Instituto Español de Oceanografía, 2003, 19(1/4): 509−512.
|
[18] |
Northern T J. Investigating the post mortem applications of hard parts from two common New Zealand Squid Species: Onykia ingens and Nototodarus sloanii[D]. Dunedin, New Zealand: University of Otago, 2016.
|
[19] |
方舟. 基于角质颚的北太平洋柔鱼渔业生态学研究[D]. 上海: 上海海洋大学, 2016.
Fang Zhou. Fisheries ecology of neon flying squid Ommastrephes bartramii in North Pacific Ocean based on beak[D]. Shanghai: Shanghai Ocean University, 2016.
|
[20] |
Liu Bilin, Chen Yong, Chen Xinjun. Spatial difference in elemental signatures within early ontogenetic statolith for identifying Jumbo flying squid natal origins[J]. Fisheries Oceanography, 2015, 24(4): 335−346. doi: 10.1111/fog.12112
|
[21] |
Zumholz K, Hansteen T H, Hillion F, et al. Elemental distribution in cephalopod statoliths: NanoSIMS provides new insights into nano-scale structure[J]. Reviews in Fish Biology and Fisheries, 2007, 17(2): 487−491.
|
[22] |
Ikeda Y, Arai N, Kidokoro H, et al. Strontium: calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behaviour[J]. Marine Ecology Progress Series, 2003, 251: 169−179. doi: 10.3354/meps251169
|
[23] |
Dove S G, Kingsford M J. Use of otoliths and eye lenses for measuring trace-metal incorporation in fishes: a biogeographic study[J]. Marine Biology, 1998, 130(3): 377−387. doi: 10.1007/s002270050258
|
[24] |
Kingsford M J, Gillanders B M. Variation in concentrations of trace elements in otoliths and eye lenses of a temperate reef fish, Parma microlepis, as a function of depth, spatial scale, and age[J]. Marine Biology, 2000, 137(3): 403−414. doi: 10.1007/s002270000304
|
[25] |
Sturm M. Migration studies of fish by measurement of strontium isotope ratios and multi-elemental patterns in otoliths using LA-ICP-MS[D]. Vienna: University of Natural Resources and Applied Life Sciences, 2008.
|
[26] |
金岳. 基于硬组织的中国近海枪乌贼渔业生物学研究[D]. 上海: 上海海洋大学, 2018.
Jin Yue. Fishery biology of Loliginidae in China Seas based on hard tissues[D]. Shanghai: Shanghai Ocean University, 2018.
|
[27] |
Zong Keqing, Klemd R, Yuan Yu, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32−48. doi: 10.1016/j.precamres.2016.12.010
|
[28] |
Soto-Jiménez M F. Trace element trophic transfer in aquatic food webs[J]. Hidrobiológica, 2011, 21(3): 239−248.
|
[29] |
Zumholz K, Hansteen T H, Klügel A, et al. Food effects on statolith composition of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2006, 150(2): 237−244. doi: 10.1007/s00227-006-0342-0
|
[30] |
Rooker J R, Secor D H, Zdanowicz V S, et al. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry[J]. Marine Ecology Progress Series, 2001, 218: 275−282. doi: 10.3354/meps218275
|
[31] |
Ashford J R, Jones C M, Hofman E, et al. Can otolith elemental signatures record the capture site of Patagonian toothfish (Dissostichus eleginoides), a fully marine fish in the southern ocean?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(12): 2832−2840. doi: 10.1139/f05-191
|
[32] |
Yamane K, Shirai K, Nagakura Y, et al. Spatial variation of otolith elemental composition of the Pacific herring Clupea pallasii in northern Japan[J]. Aquatic Biology, 2010, 10: 283−290. doi: 10.3354/ab00291
|
[33] |
Swart P K, Elderfield H, Greaves M J. A high-resolution calibration of Sr/Ca thermometry using the Caribbean coral Montastraea annularis[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1−11.
|
[34] |
Zacherl D C. Spatial and temporal variation in statolith and protoconch trace elements as natural tags to track larval dispersal[J]. Marine Ecology Progress Series, 2005, 290: 145−163. doi: 10.3354/meps290145
|
[35] |
Campana S E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications[J]. Marine Ecology Progress Series, 1999, 188: 263−297. doi: 10.3354/meps188263
|
[36] |
Ikeda Y, Arai N, Sakamoto W, et al. Preliminary report on PIXE analysis for trace elements of Octopus dofleini statoliths[J]. Fisheries Science, 1999, 65(1): 161−162. doi: 10.2331/fishsci.65.161
|
[37] |
Zumholz K, Klügel A, Hansteen T H, et al. Statolith microchemistry traces the environmental history of the boreoatlantic armhook squid Gonatus fabricii[J]. Marine Ecology Progress Series, 2007, 333: 195−204. doi: 10.3354/meps333195
|
[38] |
Ikeda Y, Arai N, Sakamoto W, et al. Comparison on trace elements in squid statoliths of different species’ origin: as available key for taxonomic and phylogenetic study[J]. International Journal of PIXE, 1997, 7(3/4): 141−146.
|
[39] |
Ikeda Y, Yatsu A, Arai N, et al. Concentration of statolith trace elements in the jumbo fying squid during El Niño and non-El Niño years in the eastern Pacic[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82: 863−866.
|
[40] |
Zacherl D C, Manríquez P H, Paradis G, et al. Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories[J]. Marine Ecology Progress Series, 2003, 248: 297−303. doi: 10.3354/meps248297
|
[41] |
Bath G E, Thorrold S R, Jones C M, et al. Strontium and barium uptake in aragonitic otoliths of marine fish[J]. Geochimica et Cosmochimica Acta, 2000, 64(10): 1705−1714. doi: 10.1016/S0016-7037(99)00419-6
|
[42] |
Zumholz K, Hansteen T H, Piatkowski U, et al. Influence of temperature and salinity on the trace element incorporation into statoliths of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2007, 151(4): 1321−1330. doi: 10.1007/s00227-006-0564-1
|