Citation: | Pan Haidong,Wang Yuzhe,Lü Xianqing. The study of the trends of tidal amplitudes of major constituents in the South China Sea[J]. Haiyang Xuebao,2021, 43(6):26–34 doi: 10.12284/hyxb2021096 |
[1] |
Woodworth P L. A survey of recent changes in the main components of the ocean tide[J]. Continental Shelf Research, 2010, 30(15): 1680−1691. doi: 10.1016/j.csr.2010.07.002
|
[2] |
Talke S A, Jay D A. Changing tides: the role of natural and anthropogenic factors[J]. Annual Review of Marine Science, 2020, 12: 121−151. doi: 10.1146/annurev-marine-010419-010727
|
[3] |
Doodson A T. Perturbations of harmonic tidal constants[J]. Proceedings of the Royal Society, London Mathematical, Physical and Engineering Sciences, 1924, 106(739): 513−526.
|
[4] |
Godin G. Possibility of rapid changes in the tide of the Bay of Fundy, based on a scrutiny of the records from Saint John[J]. Continental Shelf Research, 1992, 12(2/3): 327−338. doi: 10.1016/0278-4343(92)90034-H
|
[5] |
Godin G. Rapid evolution of the tide in the Bay of Fundy[J]. Continental Shelf Research, 1995, 15(2/3): 369−372.
|
[6] |
Cartwright D E. Secular changes in the oceanic tides at Brest, 1711−1936[J]. Geophysical Journal International, 1972, 30(4): 433−449. doi: 10.1111/j.1365-246X.1972.tb05826.x
|
[7] |
DiLorenzo J L, Huang Poshu, Thatcher M L, et al. Dredging impacts of Delaware estuary tides[C]//Proceedings of the 3rd International Conference Sponsored by the Waterway, Port, Coastal and Ocean Division, Estuarine and Coastal Modeling III. Oak Brook, IL: ASCE, 1993, 19: 86−104.
|
[8] |
Flick R E, Murray J F, Ewing L C. Trends in United States tidal datum statistics and tide range[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2003, 129(4): 155−164. doi: 10.1061/(ASCE)0733-950X(2003)129:4(155)
|
[9] |
Ray R D. Secular changes of the M2 tide in the Gulf of Maine[J]. Continental Shelf Research, 2006, 26(3): 422−427. doi: 10.1016/j.csr.2005.12.005
|
[10] |
Colosi J A, Munk W. Tales of the venerable Honolulu tide gauge[J]. Journal of Physical Oceanography, 2006, 36(4): 967−996.
|
[11] |
Jay D A. Evolution of tidal amplitudes in the eastern Pacific Ocean[J]. Geophysical Research Letters, 2009, 36(4): L04603.
|
[12] |
Ray R D. Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean[J]. Geophysical Research Letters, 2009, 36(19): L19601. doi: 10.1029/2009GL040217
|
[13] |
Müller M. Rapid change in semi-diurnal tides in the North Atlantic since 1980[J]. Geophysical Research Letters, 2011, 38(11): L11602.
|
[14] |
Winterwerp J C, Wang Z B. Man-induced regime shifts in small estuaries—I: theory[J]. Ocean Dynamics, 2013, 63(11): 1279−1292.
|
[15] |
Feng Xiangbo, Tsimplis M N, Woodworth P L. Nodal variations and long-term changes in the main tides on the coasts of China[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1215−1232. doi: 10.1002/2014JC010312
|
[16] |
Rodríguez-Padilla I, Ortiz M. On the secular changes in the tidal constituents in San Francisco Bay[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7395−7406. doi: 10.1002/2016JC011770
|
[17] |
Devlin A T, Jay D A, Zaron E D, et al. Tidal variability related to sea level variability in the Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8445−8463. doi: 10.1002/2017JC013165
|
[18] |
Devlin A T, Pan Jiayi, Lin Hui. Extended spectral analysis of tidal variability in the North Atlantic Ocean[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 506−526. doi: 10.1029/2018JC014694
|
[19] |
Ralston D K, Talke S, Geyer W R, et al. Bigger tides, less flooding: effects of dredging on barotropic dynamics in a highly modified estuary[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 196−211. doi: 10.1029/2018JC014313
|
[20] |
Pan Haidong, Guo Zheng, Lü Xianqing. Inversion of tidal open boundary conditions of the M2 constituent in the Bohai and Yellow Seas[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(8): 1661−1672. doi: 10.1175/JTECH-D-16-0238.1
|
[21] |
Green J A M, David T W. Non-assimilated tidal modeling of the South China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 78: 42−48. doi: 10.1016/j.dsr.2013.04.006
|
[22] |
Gao Xiumin, Wei Zexun, Lü Xianqing, et al. Numerical study of tidal dynamics in the South China Sea with adjoint method[J]. Ocean Modelling, 2015, 92: 101−114. doi: 10.1016/j.ocemod.2015.05.010
|
[23] |
Fang Guohong, Kwok Y K, Yu Kejun, et al. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand[J]. Continental Shelf Research, 1999, 19(7): 845−869. doi: 10.1016/S0278-4343(99)00002-3
|
[24] |
Zu Tingting, Gan Jianping, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the South China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55(2): 137−154. doi: 10.1016/j.dsr.2007.10.007
|
[25] |
王延强, 仉天宇, 朱学明. 基于18.6年卫星高度计资料对南海潮汐的分析与研究[J]. 海洋预报, 2014, 31(2): 35−40.
Wang Yanqing, Zhang Tianyu, Zhu Xueming. Tidal characteristics analysis in the South China Sea by 18.6 years satellite altimetry data[J]. Marine Forecasts, 2014, 31(2): 35−40.
|
[26] |
雷宁, 付延光, 杨龙, 等. 一种建立南海浅海海域高精度潮汐模型方法的研究[J]. 海洋科学进展, 2016, 34(3): 370−376.
Lei Ning, Fu Yanguang, Yang Long, et al. A method of constructing high precision tide model for shallow water in the South China Sea[J]. Advances in Marine Science, 2016, 34(3): 370−376.
|
[27] |
赵玖强, 张艳伟, 刘志飞, 等. 南海北部深海潮汐的季节性变化特征[J]. 中国科学: 地球科学, 2019, 62(4): 671−683. doi: 10.1007/s11430-017-9315-7
Zhao Jiuqiang, Zhang Yanwei, Liu Zhifei, et al. Seasonal variability of tides in the deep northern South China Sea[J]. Science China (Terrae), 2019, 62(4): 671−683. doi: 10.1007/s11430-017-9315-7
|
[28] |
刘旭华, 杨俊钢, 刘全生, 等. 基于长时序T/P和Jason系列卫星高度计数据的中国南海潮汐信息提取研究[J]. 地球物理学进展, 2020, 35(2): 438−444.
Liu Xuhua, Yang Jungang, Liu Quansheng, et al. Extraction of tidal information in the South China Sea base on long time series of T/P and Jason series altimeter data[J]. Progress in Geophysics, 2020, 35(2): 438−444.
|
[29] |
Pan Haidong, Lü Xianqing, Wang Yingying, et al. Exploration of tidal-fluvial interaction in the Columbia river estuary using S_TIDE[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6598−6619. doi: 10.1029/2018JC014146
|
[30] |
Wang Daosheng, Pan Haidong, Jin Guangzhen, et al. Seasonal variation of the principal tidal constituents in the Bohai Sea[J]. Ocean Science, 2020, 16(1): 1−14. doi: 10.5194/os-16-1-2020
|
[31] |
潘海东. S_TIDE工具包使用中文教程1.0[R]. 青岛: 中国海洋大学, 2019.
Pan Haidong. S_TIDE toolbox tutorials (in Chinese)[R]. Qingdao: Ocean University of China, 2019.
|
[32] |
Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937.
|
[33] |
Jin Guangzhen, Pan Haidong, Zhang Qilin, et al. Determination of harmonic parameters with temporal variations: An enhanced harmonic analysis algorithm and application to internal tidal currents in the South China Sea[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(7): 1375−1398. doi: 10.1175/JTECH-D-16-0239.1
|
[34] |
Guo Zheng, Pan Haidong, Fan Wei, et al. Application of surface spline interpolation in inversion of bottom friction coefficients[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(9): 2021−2028. doi: 10.1175/JTECH-D-17-0012.1
|
[35] |
Pan Haidong, Zheng Quanxin, Lü Xianqing. Temporal changes in the response of the nodal modulation of the M2 tide in the Gulf of Maine[J]. Continental Shelf Research, 2019, 186: 13−20. doi: 10.1016/j.csr.2019.07.007
|
[36] |
Familkhalili R, Talke S A. The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC[J]. Geophysical Research Letters, 2016, 43(17): 9138−9147. doi: 10.1002/2016GL069494
|
[37] |
Chant R J, Sommerfield C K, Talke S A. Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin[J]. Estuaries and Coasts, 2018, 41(6): 1587−1600. doi: 10.1007/s12237-018-0379-6
|
[38] |
Devlin A T, Jay D A, Talke S A, et al. Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?[J]. Ocean Dynamics, 2014, 64(8): 1093−1120. doi: 10.1007/s10236-014-0741-6
|
[39] |
Devlin A T, Jay D A, Talke S A, et al. Coupling of sea level and tidal range changes, with implications for future water levels[J]. Scientific Reports, 2017, 7: 17021. doi: 10.1038/s41598-017-17056-z
|
[40] |
Schindelegger M, Green J A M, Wilmes S B, et al. Can we model the effect of observed sea level rise on tides?[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4593−4609. doi: 10.1029/2018JC013959
|
[41] |
王佳莹, 方国洪, 王永刚. 南海海面风场、高度场和温度场近十年的变化趋势及年际变化特征[J]. 海洋科学进展, 2017, 35(2): 159−175.
Wang Jiaying, Fang Guohong, Wang Yonggang. Trends and interannual variability of the South China Sea surface winds, surface height and surface temperature in the recent decade[J]. Advances in Marine Science, 2017, 35(2): 159−175.
|