Citation: | Wang Jiachong,Wu Ziyin,Wang Mingwei, et al. ELM-AdaBoost method of acoustic seabed sediment classification[J]. Haiyang Xuebao,2021, 43(12):144–151 doi: 10.12284/hyxb2021091 |
[1] |
周兴华, 陈永奇. 多波束声纳数据的底质分类[C]// 我国专属经济区和大陆架勘测研究专项学术交流会论文集. 北京: 海洋出版社, 2002: 1-7.
Zhou Xinghua, Chen Yongqi. A review of seafloor sediment classification using multibeam sonar data[C]// Collected Works of Exploration in Exclusive Economic Zone and Shelf Area of China. Beijing: China Ocean Press, 2002: 1−7.
|
[2] |
吴自银, 郑玉龙, 初凤友, 等. 海底浅表层信息声探测技术研究现状及发展[J]. 地球科学进展, 2005, 20(11): 1210−1217. doi: 10.3321/j.issn:1001-8166.2005.11.007
Wu Ziyin, Zheng Yulong, Chu Fengyou, et al. Research status and prospect of sonar-detecting techniques near submarine[J]. Advances in Earth Science, 2005, 20(11): 1210−1217. doi: 10.3321/j.issn:1001-8166.2005.11.007
|
[3] |
Alexandrou D, Pantzartzis D. Seafloor classification with neural networks[C]//Conference Proceedings on Engineering in the Ocean Environment. Washington: IEEE, 1990: 24−26.
|
[4] |
阳凡林, 刘经南, 赵建虎, 等. 基于遗传算法的BP网络实现海底底质分类[J]. 测绘科学, 2006, 31(2): 111−114. doi: 10.3771/j.issn.1009-2307.2006.02.038
Yang Fanlin, Liu Jingnan, Zhao Jianhu, et al. Seabed classification using BP neural network based on GA[J]. Science of Surveying and Mapping, 2006, 31(2): 111−114. doi: 10.3771/j.issn.1009-2307.2006.02.038
|
[5] |
唐秋华, 刘保华, 陈永奇, 等. 基于改进BP神经网络的海底底质分类[J]. 海洋测绘, 2009, 29(5): 40−43,56. doi: 10.3969/j.issn.1671-3044.2009.05.012
Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Seabed classification with improved BP neural network[J]. Hydrographic Surveying and Charting, 2009, 29(5): 40−43,56. doi: 10.3969/j.issn.1671-3044.2009.05.012
|
[6] |
陈佳兵, 吴自银, 赵荻能, 等. 基于粒子群优化算法的PSO-BP海底声学底质分类方法[J]. 海洋学报, 2017, 39(9): 51−57.
Chen Jiabing, Wu Ziyin, Zhao Dineng, et al. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Haiyang Xuebao, 2017, 39(9): 51−57.
|
[7] |
贺清碧. BP神经网络及应用研究[D]. 重庆: 重庆交通学院, 2004.
He Qingbi. Back propagation neural network and applications[D]. Chongqing: Chongqing Jiaotong University, 2004.
|
[8] |
Chakraborty B, Kodagali V, Baracho J. Sea-floor classification using multibeam echo-sounding angular backscatter data: A real-time approach employing hybrid neural network architecture[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 121−128. doi: 10.1109/JOE.2002.808211
|
[9] |
唐秋华, 周兴华, 丁继胜, 等. 学习向量量化神经网络在多波束底质分类中的应用研究[J]. 武汉大学学报:信息科学版, 2006, 31(3): 229−232.
Tang Qiuhua, Zhou Xinghua, Ding Jisheng, et al. Seafloor classification from multibeam backscatter data using learning vector quantization neural network[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 229−232.
|
[10] |
熊明宽, 吴白银, 李守军, 等. 基于SVM的海底声纳图像底质识别[J]. 海洋通报, 2012, 31(4): 409−414.
Xiong Mingkuan, Wu Ziyin, Li Shoujun, et al. Seafloor sonar sediment image recognition with the Support Vector Machine[J]. Marine Science Bulletin, 2012, 31(4): 409−414.
|
[11] |
郭军, 马金凤. 基于粒子群优化算法的SVM神经网络在海底底质分类中的应用[J]. 测绘与空间地理信息, 2012, 35(12): 66−68. doi: 10.3969/j.issn.1672-5867.2012.12.021
Guo Jun, Ma Jinfeng. Support vector machine neural network based on particle swarm optimization in seafloor classification[J]. Geomatics & Spatial Information Technology, 2012, 35(12): 66−68. doi: 10.3969/j.issn.1672-5867.2012.12.021
|
[12] |
马飞虎, 鄂栋臣, 赵建虎, 等. 基于ISODATA算法的海底底质分类[J]. 测绘信息与工程, 2008, 33(6): 43−45.
Ma Feihu, E Dongchen, Zhao Jianhu, et al. Seabed classification based on ISODATA algorithm[J]. Journal of Geomatics, 2008, 33(6): 43−45.
|
[13] |
吕良, 金绍华, 边刚, 等. K-均值聚类算法在多波束底质分类中的应用[J]. 海洋测绘, 2018, 38(3): 64−68. doi: 10.3969/j.issn.1671-3044.2018.03.016
Lü Liang, Jin Shaohua, Bian Gang, et al. The application of K-means clustering analysis algorithm in multibeam seafloor classification[J]. Hydrographic Surveying and Charting, 2018, 38(3): 64−68. doi: 10.3969/j.issn.1671-3044.2018.03.016
|
[14] |
Marsh I, Brown C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied Acoustics, 2009, 70(10): 1269−1276. doi: 10.1016/j.apacoust.2008.07.012
|
[15] |
唐秋华, 刘保华, 陈永奇, 等. 基于自组织神经网络的声学底质分类研究[J]. 声学技术, 2007, 26(3): 380−384. doi: 10.3969/j.issn.1000-3630.2007.03.006
Tang Qiuhua, Liu Baohua, Chen Yongqi, et al. Acoustic seafloor classification using self organizing map neural network[J]. Technical Acoustics, 2007, 26(3): 380−384. doi: 10.3969/j.issn.1000-3630.2007.03.006
|
[16] |
郭军, 马金凤. 基于K-L变换的自组织竞争神经网络在海底底质分类中的应用[J]. 测绘工程, 2013, 22(1): 51−54. doi: 10.3969/j.issn.1006-7949.2013.01.014
Guo Jun, Ma Jinfeng. Self-organization competition neural network based on K-L transform in seafloor classification[J]. Engineering of Surveying and Mapping, 2013, 22(1): 51−54. doi: 10.3969/j.issn.1006-7949.2013.01.014
|
[17] |
赵芳, 索岩, 彭子然. 基于蚁群优化与独立特征集的遥感图像实时分类算法[J]. 计算机应用研究, 2020, 37(2): 573−577.
Zhao Fang, Suo Yan, Peng Ziran. Real-time classification algorithm of remote sensing images based on ant colony optimization algorithm and independent feature sets[J]. Application Research of Computers, 2020, 37(2): 573−577.
|
[18] |
吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌——探测与处理理论技术[M]. 北京: 科学出版社, 2017.
Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High-Resolution Submarine Topography−−Theory and Technology for Surveying and Post-Processing[M]. Beijing: Science Press , 2017.
|
[19] |
Ji Xue, Yang Bisheng, Tang Qiuhua. Acoustic seabed classification based on multibeam echosounder backscatter data using the PSO-BP-AdaBoost Algorithm: A case study from Jiaozhou Bay, China[J]. IEEE Journal of Oceanic Engineering, 2021, 46(2): 509−519. doi: 10.1109/JOE.2020.2989853
|
[20] |
边冰, 赵明政. 基于深度极限学习机的水质预测研究[J]. 华北理工大学学报(自然科学版), 2020, 42(1): 51−57.
Bian Bing, Zhao Mingzheng. Study on water quality prediction based on deep extreme learning machine[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2020, 42(1): 51−57.
|
[21] |
吴军, 王士同, 赵鑫. 正负模糊规则系统、极限学习机与图像分类[J]. 中国图象图形学报, 2011, 16(8): 1408−1417. doi: 10.11834/jig.100621
Wu Jun, Wang Shitong, Zhao Xin. Positive and negative fuzzy rule system, extreme learning machine and image classification[J]. Journal of Image and Graphics, 2011, 16(8): 1408−1417. doi: 10.11834/jig.100621
|
[22] |
Huang Guangbin, Zhu Qinyu, Siew C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2005: 25−29.
|
[23] |
Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1995, 55(1): 119−139.
|
[24] |
唐秋华, 周兴华, 丁继胜, 等. 多波束反向散射强度数据处理研究[J]. 海洋学报, 2006, 28(2): 51−55.
Tang Qiuhua, Zhou Xinghua, Ding Jisheng, et al. Study on processing of multibeam backscatter data[J]. Haiyang Xuebao, 2006, 28(2): 51−55.
|
[25] |
李庆武, 霍冠英, 周妍. 声呐图像处理[M]. 北京: 科学出版社, 2015.
Li Qingwu, Huo Guanying, Zhou Yan. Sonar Image Processing[M]. Beijing: Science Press, 2015.
|
[26] |
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622−635. doi: 10.11834/jig.20090409
Liu Li, Kuang Gangyao. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4): 622−635. doi: 10.11834/jig.20090409
|
[27] |
Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610−621. doi: 10.1109/TSMC.1973.4309314
|
[28] |
Wu Ziyin, Milliman J D, Zhao Dineng, et al. Geomorphologic changes in the lower Pearl River Delta, 1850−2015, largely due to human activity[J]. Geomorphology, 2018, 314: 42−54. doi: 10.1016/j.geomorph.2018.05.001
|
[29] |
Wu Ziyin, Saito Y, Zhao Dineng, et al. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River Estuary, China during 1955−2013[J]. Scientific Reports, 2016, 6(1): 37742. doi: 10.1038/srep37742
|
[30] |
Wu Ziyin, Milliman J D, Zhao Dineng, et al. Recent geomorphic change in LingDing Bay, China, in response to economic and urban growth on the Pearl River Delta, Southern China[J]. Global and Planetary Change, 2014, 123: 1−12. doi: 10.1016/j.gloplacha.2014.10.009
|
[31] |
熊明宽, 吴自银, 李守军, 等. 基于遗传小波神经网络的海底声学底质识别分类[J]. 海洋学报, 2014, 36(5): 90−97.
Xiong Mingkuan, Wu Ziyin, Li Shoujun, et al. Wavelet neural network identification and classification of sediment seabed sonar images based on genetic algorithms[J]. Haiyang Xuebao, 2014, 36(5): 90−97.
|