Citation: | Xu Huan,Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao,2021, 43(6):157–170 doi: 10.12284/hyxb2021084 |
[1] |
Mori M, Kosaka Y, Watanabe M, et al. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling[J]. Nature Climate Change, 2019, 9(2): 123−129. doi: 10.1038/s41558-018-0379-3
|
[2] |
Olonscheck D, Mauritsen T, Notz D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations[J]. Nature Geoscience, 2019, 12(6): 430−434. doi: 10.1038/s41561-019-0363-1
|
[3] |
自然资源部. 中国海洋灾害公报[R]. 北京: 自然资源部, 2010−2019.
Ministry of Natural Resources. China’s maritime disaster communique[R]. Beijing: Ministry of Natural Resources, 2010−2019.
|
[4] |
Soh L K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780−795. doi: 10.1109/36.752194
|
[5] |
王利亚, 何宜军, 张彪, 等. HY-2卫星扫描微波辐射计数据反演北极海冰漂移速度[J]. 海洋学报, 2017, 39(9): 110−120.
Wang Liya, He Yijun, Zhang Biao, et al. Retrieval of Arctic sea ice drift using HY-2 Satellite scanning microwave radiometer data[J]. Haiyang Xuebao, 2017, 39(9): 110−120.
|
[6] |
Dabboor M, Geldsetzer T. Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery[J]. Remote Sensing of Environment, 2014, 140: 189−195. doi: 10.1016/j.rse.2013.08.035
|
[7] |
Fetterer F, Bertoia C, Ye Jingping. Multi-year ice concentration from RADARSAT[C]//IGARSS’97.1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development. Singapore: IEEE, 1997, 1: 402−404.
|
[8] |
Su Hua, Wang Yunpeng, Xiao Jie, et al. Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 13−20. doi: 10.1016/j.isprsjprs.2013.07.010
|
[9] |
Zakhvatkina N Y, Alexandrov V Y, Johannessen O M, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(5): 2587−2600.
|
[10] |
李小娜, 张杰, 戴永寿, 等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学, 2018, 42(4): 9−17.
Li Xiaona, Zhang Jie, Dai Yongshou, et al. Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices[J]. Marine Sciences, 2018, 42(4): 9−17.
|
[11] |
Soh L K, Tsatsoulis C, Gineris D, et al. ARKTOS: An intelligent system for SAR sea ice image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1): 229−248. doi: 10.1109/TGRS.2003.817819
|
[12] |
Ochilov S, Clausi D A. Operational SAR sea-ice image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4397−4408. doi: 10.1109/TGRS.2012.2192278
|
[13] |
郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113−124.
Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113−124.
|
[14] |
张明, 吕晓琪, 张晓峰, 等. 结合纹理特征的SVM海冰分类方法研究[J]. 海洋学报, 2018, 40(11): 149−156.
Zhang Ming, Lü Xiaoqi, Zhang Xiaofeng, et al. Research on SVM sea ice classification based on texture features[J]. Haiyang Xuebao, 2018, 40(11): 149−156.
|
[15] |
李晓明, 张强. 星载合成孔径雷达北极海冰覆盖观测[J]. 海洋学报, 2019, 41(4): 145−146.
Li Xiaoming, Zhang Qiang. Observation of Arctic sea ice cover by spaceborne synthetic aperture radar[J]. Haiyang Xuebao, 2019, 41(4): 145−146.
|
[16] |
Leigh S, Wang Zhijie, Clausi D A. Automated ice–water classification using dual polarization SAR satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(9): 5529−5539.
|
[17] |
Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1566−1574. doi: 10.1109/TGRS.2004.828179
|
[18] |
Wang Chao, Zhang Hong, Wang Yuanyuan, et al. Sea ice classification with convolutional neural networks using sentinel-L ScanSAR images[C]//IGARSS 2018−2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 7125−7128.
|
[19] |
Li Xiaofeng, Liu Bin, Zheng Gang, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584−1605. doi: 10.1093/nsr/nwaa047
|
[20] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444. doi: 10.1038/nature14539
|
[21] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY, United States: Curran Associates Inc., 2012: 1097−1105.
|
[22] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego, CA: International Conference on Learning Representations, 2015.
|
[23] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770−778.
|
[24] |
Ren Yibin, Chen Huanfa, Han Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4): 802−823. doi: 10.1080/13658816.2019.1652303
|
[25] |
Zhang Xudong, Li Xiaofeng. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 1−11.
|
[26] |
Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data–driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
|
[27] |
Li Jinxin, Wang Chao, Wang Shigang, et al. Gaofen-3 sea ice detection based on deep learning[C]//2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Singapore, Singapore: IEEE, 2017: 933−939.
|
[28] |
Xu Yan, Scott K A. Sea ice and open water classification of SAR imagery using CNN-based transfer learning[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA: IEEE, 2017: 3262−3265.
|
[29] |
黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732.
Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732.
|
[30] |
Dierking W. Mapping of different sea ice regimes using images from Sentinel-1 and ALOS Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(3): 1045−1058.
|
[31] |
Geldsetzer T, Yackel J J. Sea ice type and open water discrimination using dual co-polarized C-band SAR[J]. Canadian Journal of Remote Sensing, 2009, 35(1): 73−84. doi: 10.5589/m08-075
|
[32] |
Fabijańska A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network[J]. Artificial Intelligence in Medicine, 2018, 88: 1−13. doi: 10.1016/j.artmed.2018.04.004
|
[33] |
Lian Sheng, Luo Zhiming, Zhong Zhun, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56: 296−304. doi: 10.1016/j.jvcir.2018.10.001
|
[34] |
Liu Bin, Li Xiaofeng, Zheng Gang. Coastal inundation mapping from bitemporal and dual-polarization SAR imagery based on deep convolutional neural networks[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9101−9113. doi: 10.1029/2019JC015577
|
[35] |
Shen Dongliang, Liu Bin, Li Xiaofeng. Sea surface wind retrieval from synthetic aperture radar data by deep convolutional neural networks[C]//IGARSS 2019−2019 IEEE International Geoscience and Remote Sensing Symposium. Japan, Yokohama, IEEE, 2019: 8035−8038.
|
[36] |
Foumelis M. ESA sentinel-1 toolbox generation of SAR backscattering mosaics[DB/OL].[2020-06-28]. http://step.esa.int/main/doc/tutorials/. 2015.
|
[37] |
Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1/3): 157−173.
|
[38] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234−241.
|
[39] |
Deepan P, Sudha L R. Object classification of remote sensing image using deep convolutional neural network[M]//Peter D, Alavi A H, Javadi B, et al. The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems. London: Academic Press, 2020: 107−120.
|
[40] |
Wang Mingchang, Zhang Xinyue, Niu Xuefeng, et al. Scene classification of high-resolution remotely sensed image based on ResNet[J]. Journal of Geovisualization and Spatial Analysis, 2019, 3(2): 16. doi: 10.1007/s41651-019-0039-9
|
[41] |
Gao Ligang, Chen Paiyu, Yu Shimeng. Demonstration of convolution kernel operation on resistive cross-point array[J]. IEEE Electron Device Letters, 2016, 37(7): 870−873. doi: 10.1109/LED.2016.2573140
|
[42] |
袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203−230.
Yuan Feiniu, Zhang Lin, Shi Jinting, et al. Theories and applications of auto-encoder neural networks: a literature survey[J]. Chinese Journal of Computers, 2019, 42(1): 203−230.
|
[43] |
Kingma D, Ba J. Adam: A method for stochastic optimization[C]. San Diego, CA: International Conference on Learning Representations, 2015.
|