Citation: | Zhang Tianjiao,Liao Zhangze,Song Bo, et al. Improvement of marine environment feature extraction based on deep convolution embedded clustering (DCEC) for fishery forecast model−A case study of bigeye tuna (Thunnus obesus) in the Southwest Indian Ocean[J]. Haiyang Xuebao,2021, 43(8):105–117 doi: 10.12284/hyxb2021072 |
[1] |
徐国强, 朱文斌, 张洪亮, 等. 基于GAM模型分析印度洋大眼金枪鱼和黄鳍金枪鱼渔场分布与不同环境因子关系[J]. 海洋学报, 2018, 40(12): 68−80.
Xu Guoqiang, Zhu Wenbin, Zhang Hongliang, et al. Relationship between fishing grounds of Thunnus obesus and Thunnus albacores with environmental factors in the Indian Ocean based on generalized additive model[J]. Haiyang Xuebao, 2018, 40(12): 68−80.
|
[2] |
IOTC, Secretariat. Executive summary: bigeye tuna[EB/OL]. (2018−11−26) [2020−08−10]. http://doi.org/10.5281/zenodo.3263175.
|
[3] |
Ma Qiuyun, Tian Siquan, Song Liming, et al. Preliminary stock assessment for Bigeye tuna Thunnus obesus in the Indian Ocean using JABBA[C]//Working Party on Tropical Tunas (WPTT). Indonesia: Indian Ocean Tuna Commission, 2018.
|
[4] |
沈智宾, 陈新军, 汪金涛. 基于海表温度和海面高度的东太平洋大眼金枪鱼渔场预测[J]. 海洋科学, 2015, 39(10): 45−51. doi: 10.11759/hykx20140621002
Shen Zhibin, Chen Xinjun, Wang Jintao. Forecasting of Bigeye tuna fishing ground in the Eastern Pacific Ocean based on sea surface temperature and sea surface height[J]. Marine Sciences, 2015, 39(10): 45−51. doi: 10.11759/hykx20140621002
|
[5] |
Lehodey P, Senina I, Wibawa T A, et al. Operational modelling of bigeye tuna (Thunnus obesus) spatial dynamics in the Indonesian region[J]. Marine Pollution Bulletin, 2018, 131: 19−32. doi: 10.1016/j.marpolbul.2017.08.020
|
[6] |
Dunn N, Curnick D. Using historical fisheries data to predict tuna distribution within the British Indian Ocean Territory Marine Protected Area, and implications for its management[J]. Aquatic Conservation Marine and Freshwater Ecosystems, 2019, 29(12): 2057−2070. doi: 10.1002/aqc.3204
|
[7] |
Brodie S J, Thorson J T, Carroll G, et al. Trade-offs in covariate selection for species distribution models: a methodological comparison[J]. Ecography, 2020, 43(1): 11−24. doi: 10.1111/ecog.04707
|
[8] |
查铖, 贺琪, 宋巍, 等. 结合注意力机制的区域型海表面温度预报算法[J]. 海洋通报, 2020, 39(2): 191−199.
Zha Cheng, He Qi, Song Wei, et al. Regional sea surface temperature prediction algorithm combined with attention mechanism[J]. Marine Science Bulletin, 2020, 39(2): 191−199.
|
[9] |
Guo Xifeng, Liu Xinwang, Zhu En, et al. Deep Clustering with Convolutional Autoencoders[M]. Cham: Springer, 2017. doi: 10.1007/978-3-319-70096-0_39.
|
[10] |
武胜男, 陈新军, 刘祝楠. 基于GAM的西北太平洋日本鲭资源丰度预测模型建立[J]. 海洋学报, 2019, 41(8): 36−42.
Wu Shengnan, Chen Xinjun, Liu Zhunan. Establishment of forecasting model of the abundance index for chub mackerel (Scomber japonicus) in the northwest Pacific Ocean based on GAM[J]. Haiyang Xuebao, 2019, 41(8): 36−42.
|
[11] |
杨胜龙, 范秀梅, 伍玉梅, 等. 基于GAM模型的阿拉伯海鲐鱼渔场分布与环境关系[J]. 生态学杂志, 2019, 38(8): 2466−2470.
Yang Shenglong, Fan Xiumei, Wu Yumei, et al. The relationship between the fishing ground of mackerel (Scomber australasicus) in Arabian Sea and the environment based on GAM model[J]. Chinese Journal of Ecology, 2019, 38(8): 2466−2470.
|
[12] |
闫敏, 张衡, 伍玉梅, 等. 基于GAM模型研究时空及环境因子对南太平洋长鳍金枪鱼渔场的影响[J]. 大连海洋大学学报, 2015, 30(6): 681−685.
Yan Min, Zhang Heng, Wu Yumei, et al. Effects of spatio-temporal and environmental factors on fishing grounds of albacore tuna Thunnus alalunga in the South Pacific Ocean based on generalized additive model[J]. Journal of Dalian Ocean University, 2015, 30(6): 681−685.
|
[13] |
Arbelaitz O, Gurrutxaga I, Muguerza J, et al. An extensive comparative study of cluster validity indices[J]. Pattern Recognition, 2013, 46(1): 243−256. doi: 10.1016/j.patcog.2012.07.021
|
[14] |
杨胜龙, 周为峰, 伍玉梅, 等. 西北印度洋大眼金枪鱼渔场预报模型建立与模块开发[J]. 水产科学, 2011, 30(11): 666−672. doi: 10.3969/j.issn.1003-1111.2011.11.003
Yang Shenglong, Zhou Weifeng, Wu Yumei, et al. Development of predictive model and module of fishing ground for Bigeye Tuna, Thunnus obesusand in the Northwest Indian Ocean[J]. Fisheries Science, 2011, 30(11): 666−672. doi: 10.3969/j.issn.1003-1111.2011.11.003
|
[15] |
Murase H, Nagashima H, Yonezaki S, et al. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan[J]. ICES Journal of Marine Science, 2009, 66(6): 1417−1424. doi: 10.1093/icesjms/fsp105
|
[16] |
武胜男, 陈新军. 基于GLM和GAM的日本鲭太平洋群体补充量与产卵场影响因子关系分析[J]. 水产学报, 2020, 44(1): 61−70.
Wu Shengnan, Chen Xinjun. Relationship between the recruitment of the Pacific-cohort of chub mackerel (Scomber japonicus) and the influence factors on the spawning ground based on GLM and GAM[J]. Journal of Fisheries of China, 2020, 44(1): 61−70.
|
[17] |
张云雷, 徐宾铎, 张崇良, 等. 基于Tweedie-GAM模型研究海州湾小黄鱼资源丰度与栖息环境的关系[J]. 海洋学报, 2019, 41(12): 78−89.
Zhang Yunlei, Xu Binduo, Zhang Chongliang, et al. Relationship between the habitat factors and the abundance of small yellow croaker (Larimichthys polyactis) in Haizhou Bay based on the Tweedie-GAM mode[J]. Haiyang Xuebao, 2019, 41(12): 78−89.
|
[18] |
王海军. 深度卷积神经网络在遥感影像分类的应用研究[D]. 北京: 中国地质大学, 2018.
Wang Haijun. Research and application of deep convolutional neural networks in remote sensing image classification[D]. Beijing: China University of Geosciences, 2018.
|
[19] |
孟祥鹤哲. 基于神经网络的WOA13数据的海洋温跃层分析[D]. 长春: 吉林大学, 2019.
Meng Xianghezhe. Thermocline analysis of WOA13 data based on neural network[D]. Changchun: Jilin University, 2019.
|
[20] |
崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究——以渤海海冰为例[J]. 海洋学报, 2020, 42(9): 100−109.
Cui Yanrong, Zou Bin, Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao, 2020, 42(9): 100−109.
|
[21] |
杜岩, 张涟漪, 张玉红. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 2019, 34(3): 243−254. doi: 10.11867/j.issn.1001-8166.2019.03.0243
Du Yan, Zhang Lianyi. Zhang Yuhong. Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes[J]. Advances in Earth Science, 2019, 34(3): 243−254. doi: 10.11867/j.issn.1001-8166.2019.03.0243
|
[22] |
姜德忠, 解思梅, 包澄澜, 等. 35°S以北的印度洋的气候状况和季风特征[J]. 海洋预报, 1998, 15(4): 40−49. doi: 10.11737/j.issn.1003-0239.1998.04.006
Jiang Dezhong, Xie Simei, Bao Chenglan, et al. Climate and monsoon features of the Indian Ocean north of 35°S[J]. Marine Forecasts, 1998, 15(4): 40−49. doi: 10.11737/j.issn.1003-0239.1998.04.006
|
[23] |
刘增宏, 许建平, 吴晓芬. 印度洋海域水文特征及其季节变化[C]//第八届全国海洋资料同化研讨会暨第二届Argo科学研讨会. 北京: 海洋出版社, 2013.
Liu Zenghong, Xu Jianping, Wu Xiaofen. The characteristics of hydrography and its seasonal variability in the Indian Ocean[C]//The Eighth and the Second National Seminar on Ocean Data Assimilation Argo Scientific Conferences. Beijing: China Ocean Press, 2013.
|
[24] |
Schott F A, Xie Shangping, McCreary Jr J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47(1): RG1002.
|
[25] |
Peng Shiqiu, Qian Yukun, Lumpkin R, et al. Characteristics of the near-surface currents in the Indian Ocean as deduced from satellite-tracked surface drifters. Part II: lagrangian statistics[J]. Journal of Physical Oceanography, 2015, 45(2): 459−477. doi: 10.1175/JPO-D-14-0049.1
|
[26] |
吕为群, 袁明哲. 温度变化对鱼类行为影响的研究进展[J]. 上海海洋大学学报, 2017, 26(6): 828−835.
Lü Weiqun, Yuan Mingzhe. The literature review of temperature change effect on fish behavior[J]. Journal of Shanghai Ocean University, 2017, 26(6): 828−835.
|
[27] |
陈雪忠, 杨胜龙, 张禹, 等. 热带印度洋大眼金枪鱼垂直分布空间分析[J]. 中国水产科学, 2013, 20(3): 660−671. doi: 10.3724/SP.J.1118.2013.00660
Chen Xuezhong, Yang Shenglong, Zhang Yu, et al. Vertical distribution of bigeye tuna Thunnus obesus in the tropical Indian Ocean[J]. Journal of Fishery Sciences of China, 2013, 20(3): 660−671. doi: 10.3724/SP.J.1118.2013.00660
|
[28] |
宋利明, 杨嘉樑, 武亚苹, 等. 吉尔伯特群岛海域大眼金枪鱼(Thunnus obesus)栖息环境综合指数[J]. 海洋与湖沼, 2012, 43(5): 954−962. doi: 10.11693/hyhz201205012012
Song Liming, Yang Jialiang, Wu Yaping, et al. An integrated habitat index of bigeye tuna Thunnus obesus in waters near Gilbert Islands[J]. Oceanologia et Limnologia Sinica, 2012, 43(5): 954−962. doi: 10.11693/hyhz201205012012
|