Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 3
Apr.  2021
Turn off MathJax
Article Contents
Zhang Ying,Yang Baoju,Li Chuanshun, et al. Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge[J]. Haiyang Xuebao,2021, 43(3):90–104 doi: 10.12284/hyxb2021057
Citation: Zhang Ying,Yang Baoju,Li Chuanshun, et al. Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge[J]. Haiyang Xuebao,2021, 43(3):90–104 doi: 10.12284/hyxb2021057

Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge

doi: 10.12284/hyxb2021057
  • Received Date: 2020-02-14
  • Rev Recd Date: 2020-06-28
  • Available Online: 2021-02-25
  • Publish Date: 2021-04-23
  • In this study, elemental and mineral compositions of three surface sediments collected from the South Atlantic Ridge affected by hydrothermal activities of various degrees were analyzed, and series of extraction experiments for carbonate phase, Fe-Mn oxide phase and insoluble residual phase were carried out. Mixed reagent of hydroxylamine hydrochloride (HH) with different concentrations and 25% acetic acid (HAc) were used to extract Fe-Mn oxide phase from the sample. In order to corroborate the reliability of the extracting methods, Ti/Nd and Ti/Pb ratios of the Fe-Mn oxide phase, rare earth elements (REE) patterns as well as δCe and δEu ratios of different chemical phase were used to determine that the ideal reagent conditions for extracting Fe-Mn oxide phase from three different types of hydrothermal sediments were all 0.5 mol/L HH in 25% acetic acid. The results show that the higher the degree of influence of hydrothermal activities, the higher the contents of Fe, Cu, Zn and other elements in the sediments, and the contents of Ca, Sr and Ba show an opposite trend. Manganese, Pb and REE are not significantly affected by hydrothermal activities. As the influence of hydrothermal activity increases, the proportion of Ca, Sr and Nd increases in the Fe-Mn oxide phase and decreases in the residual phase, while Mn, Co, Ni and Zn have an opposite trend, and the proportion of Cu increases in the carbonate phase and decreases in the residual phase. Lead is not affected by the influence strength of hydrothermal activity and mainly occurs in the Fe-Mn oxide phase. REE mainly occur in the residue state. The occurrence state of REE shows that the more significant influence by the hydrothermal activities of the sediments, the more enrichment of REE in the residual phase. And the chondrite-normalized REE patterns of the residual phase exhibit that the enrichment of light REE are less obvious. This study provides methods for extracting hydrothermal fractions and valuable geochemical data for further understanding of the characteristics of hydrothermal sediments and the effects of hydrothermal activities on the occurrence state of elements in the South Atlantic Ridge.
  • loading
  • [1]
    German C R, Bennett S A, Connelly D P, et al. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4-5°S[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 332−344.
    [2]
    Haase K M, Koschinsky A, Petersen S, et al. Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: the Lilliput field at 9°33′S[J]. Marine Geology, 2009, 266(1/4): 52−64.
    [3]
    Tao Chunhui, Li Huaiming, Yang Yaomin, et al. Two hydrothermal fields found on the Southern Mid-Atlantic Ridge[J]. Science China Earth Sciences, 2011, 54(9): 1302−1303. doi: 10.1007/s11430-011-4260-8
    [4]
    Li Bing, Shi Xuefa, Wang Jixin, et al. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12−14°S)[J]. Journal of Marine Systems, 2018, 181: 1−13. doi: 10.1016/j.jmarsys.2018.02.003
    [5]
    Schmid F, Peters M, Walter M, et al. Physico-chemical properties of newly discovered hydrothermal plumes above the Southern Mid-Atlantic Ridge (13°−33°S)[J]. Deep−Sea Research Part I: Oceanographic Research Papers, 2019, 148: 34−52. doi: 10.1016/j.dsr.2019.04.010
    [6]
    Li Bing, Yang Yaomin, Shi Xuefa, et al. Characteristics of a ridge-transform inside corner intersection and associated mafic-hosted seafloor hydrothermal field (14.0°S, Mid-Atlantic Ridge)[J]. Marine Geophysical Research, 2014, 35(1): 55−68. doi: 10.1007/s11001-013-9209-1
    [7]
    李兵, 石学法, 杨耀民, 等. 南大西洋14.0°S热液区热液硫化物矿物学特征及地质意义[J]. 矿物学报, 2015, 35(1): 35−43.

    Li Bing, Shi Xuefa, Yang Yaomin, et al. Mineralogy and geological significance of hydrothermal deposits from the 14.0°S hydrothermal field, South Mid-Atlantic Ridge[J]. Acta Mineralogica Sinica, 2015, 35(1): 35−43.
    [8]
    Wang Shujie, Li Huaiming, Zhai Shikui, et al. Geochemical features of sulfides from the Deyin-1 hydrothermal field at the southern Mid-Atlantic Ridge near 15°S[J]. Journal of Ocean University of China, 2017, 16(6): 1043−1054. doi: 10.1007/s11802-017-3316-6
    [9]
    Wang Shujie, Li Huaiming, Zhai Shikui, et al. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2017, 36(2): 22−34. doi: 10.1007/s13131-016-0961-3
    [10]
    李景喜, 朱志伟, 尹晓斐, 等. 南大西洋中脊表层沉积物中稀土元素的含量及分布模式分析[J]. 分析化学, 2015, 43(1): 21−26. doi: 10.1016/S1872-2040(15)60796-4

    Li Jingxi, Zhu Zhiwei, Yin Xiaofei, et al. Analysis of contents and distribution patterns of rare earth elements in surface sediments of the south Mid-Atlantic Ridge[J]. Chinese Journal of Analytical Chemistry, 2015, 43(1): 21−26. doi: 10.1016/S1872-2040(15)60796-4
    [11]
    Xin Huang, Chen Shuai, Zeng Zhigang, et al. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South Mid-Atlantic Ridge[J]. Journal of Ocean University of China, 2017, 16(5): 775−780. doi: 10.1007/s11802-017-3311-y
    [12]
    刘菲菲, 于增慧, 高玉花, 等. 海洋沉积物的顺序萃取方法及其在冲绳海槽热液影响沉积物中的应用[J]. 海洋地质与第四纪地质, 2008, 28(5): 137−144.

    Liu Feifei, Yu Zenghui, Gao Yuhua, et al. Sequential extraction procedure for marine sediments and application to the Middle Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 137−144.
    [13]
    于增慧, 高玉花, 翟世奎, 等. 冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J]. 中国科学: 地球科学, 2012, 55(4): 665−674. doi: 10.1007/s11430-011-4273-3

    Yu Zenghui, Gao Yuhua, Zhai Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough[J]. Science China Earth Sciences, 2012, 55(4): 665−674. doi: 10.1007/s11430-011-4273-3
    [14]
    Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis[J]. Chemical Geology, 2002, 187(3/4): 179−199.
    [15]
    Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input[J]. Reviews of Geophysics, 2002, 40(1): 1−38.
    [16]
    Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments[J]. Chemical Geology, 2007, 242(3/4): 351−370.
    [17]
    Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of Aeolian flux in regulating oceanic dissolved REE[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 477−492.
    [18]
    Sun Zhilei, Cao Hong, Yin Xijie, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge[J]. Journal of Marine Systems, 2018, 187: 128−140. doi: 10.1016/j.jmarsys.2018.06.014
    [19]
    李康, 曾志刚, 殷学博, 等. 东太平洋海隆13°N和赤道附近表层沉积物中的元素赋存状态[J]. 海洋地质与第四纪地质, 2009, 29(3): 53−60.

    Li Kang, Zeng Zhigang, Yin Xuebo, et al. Mode of element occurrence in surface sediments from East Pacific Rise near 13°N and the equator[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 53−60.
    [20]
    荣坤波, 曾志刚, 武力, 等. 东太平洋海隆13°N表层含金属沉积物物质组成与元素赋存状态[J]. 海洋科学, 2018, 42(7): 70−79. doi: 10.11759/hykx20170925002

    Rong Kunbo, Zeng Zhigang, Wu Li, et al. Composition and element occurrence states of recent metalli-ferous sediments from the East Pacific Rise at 13°N[J]. Marine Sciences, 2018, 42(7): 70−79. doi: 10.11759/hykx20170925002
    [21]
    张颖, 张辉, 王小静, 等. 海洋沉积物不同相态中Sr、Nd同位素提取方法研究[J]. 海洋学报, 2020, 42(2): 155−166.

    Zhang Ying, Zhang Hui, Wang Xiaojing, et al. Sequential extraction of Sr and Nd isotope from Fe–Mn oxyhydroxide and detrital in marine sediments[J]. Haiyang Xuebao, 2020, 42(2): 155−166.
    [22]
    Wang Hao, Li Xiaohu, Chu Fengyou, et al. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge[J]. Journal of Marine Systems, 2018, 180: 220−227. doi: 10.1016/j.jmarsys.2017.02.010
    [23]
    Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325−394.
    [24]
    赵一阳, 翟世奎, 李永植, 等. 冲绳海槽中部热水活动的新记录[J]. 科学通报, 1997, 42(7): 574−577. doi: 10.1007/BF03182621

    Zhao Yiyang, Zhai Shikui, Li Yongzhi, et al. New records of submarine hydrothermal activity in middle part of the Okinawa Trough[J]. Chinese Science Bulletin, 1997, 42(7): 574−577. doi: 10.1007/BF03182621
    [25]
    杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25−37.

    Yang Baoju, Wu Yonghua, Liu Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25−37.
    [26]
    翟世奎, 于增慧, 杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J]. 海洋学报, 2007, 29(1): 58−65.

    Zhai Shikui, Yu Zenghui, Du Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Haiyang Xuebao, 2007, 29(1): 58−65.
    [27]
    Hu Qiannan, Zhang Xin, Jiang Fuqing, et al. Geochemical characteristics of hydrothermal sediments from Iheya North Knoll in the Okinawa Trough[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 947−955. doi: 10.1007/s00343-017-6035-3
    [28]
    Bloemsma M R, Zabel M, Stuut J B W, et al. Modeling the joint variability of grain size and chemical composition in sediments[J]. Sedimentary Geology, 2012, 280: 135−148. doi: 10.1016/j.sedgeo.2012.04.009
    [29]
    Dymond J. Geochemistry of Nazca Plate surface sediments: an evalution of hydrothermal, biogenic, detrital and hydrogeneous sources[J]. Geological Society of America Memoirs, 1981, 154(12): 133−173.
    [30]
    Dunk R M, Mills R A. The impact of oxic alteration on plume-derived transition metals in ridge flank sediments from the East Pacific Rise[J]. Marine Geology, 2006, 229(3/4): 133−157.
    [31]
    Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific, 1985: 312.
    [32]
    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63−114. doi: 10.1016/B978-0-444-42148-7.50008-3
    [33]
    Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511−3524. doi: 10.1016/0016-7037(95)00224-N
    [34]
    Jiang Xuejun, Lin Xuehui, Yao De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China Earth Sciences, 2011, 54(2): 197−203. doi: 10.1007/s11430-010-4070-4
    [35]
    Piper D Z. Rare earth elements in the sedimentary cycle: a summary[J]. Chemical Geology, 1974, 14(4): 285−304. doi: 10.1016/0009-2541(74)90066-7
    [36]
    Kuhn T, Bau M, Blum N, et al. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe–Mn crusts from the Central Indian Ridge[J]. Earth and Planetary Science Letters, 1998, 163(1/4): 207−220.
    [37]
    Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513−528. doi: 10.1016/0016-7037(81)90184-8
    [38]
    Li Zhenggang, Chu Fengyou, Jin Lu, et al. Major and trace element composition of surface sediments from the Southwest Indian Ridge: evidence for the incorporation of a hydrothermal component[J]. Acta Oceanologica Sinica, 2016, 35(2): 101−108. doi: 10.1007/s13131-015-0678-8
    [39]
    Elderfield H, Greaves M J. Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules[J]. Earth and Planetary Science Letters, 1981, 55(1): 163−170. doi: 10.1016/0012-821X(81)90095-9
    [40]
    Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105−5113. doi: 10.1016/0016-7037(94)90297-6
    [41]
    曾志刚, 翟世奎, 赵一阳, 等. 大西洋中脊TAG热液活动区中热液沉积物的稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 1999, 19(3): 59−66.

    Zeng Zhigang, Zhai Shikui, Zhao Yiyang, et al. Rare earth element geochemistry of hydrothermal sediment from the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 1999, 19(3): 59−66.
    [42]
    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869−3878. doi: 10.1016/0016-7037(96)00236-0
    [43]
    Kryc K A, Murray R W, Murray D W. Al-to-oxide and Ti-to-organic linkages in biogenic sediment: relationships to paleo-export production and bulk Al/Ti[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 125−141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article views (306) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return