Citation: | Pan Donglei,Tao Chunhui,Liao Shili, et al. Study on prediction method of sediment distribution trend in seafloor hydrothermal field based on topography: A case study of Dragon Horn area on the Southwest Indian Ridge[J]. Haiyang Xuebao,2021, 43(3):157–164 doi: 10.12284/hyxb2021043 |
[1] |
陶春辉. 洋中脊多金属硫化物勘查方法与技术[M]. 北京: 科学出版社, 2018.
Tao Chunhui. Exploration Methods and Techniques for Polymetallic Sulfide on the Mid-Ocean Ridges[M]. Beijing: Science Press, 2018.
|
[2] |
Gurvich E G. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation[M]. Berlin: Springer, 2006.
|
[3] |
Laurila T E, Hannington M D, Petersen S, et al. Trace metal distribution in the Atlantis II Deep (Red Sea) sediments[J]. Chemical Geology, 2014, 386: 80−100. doi: 10.1016/j.chemgeo.2014.08.009
|
[4] |
Yu Zenghui, Li Huaiming, Li Mengxing, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean[J]. Journal of Marine Systems, 2018, 180: 173−181. doi: 10.1016/j.jmarsys.2016.11.013
|
[5] |
Nakaseama M, Ishibashi J, Yamanaka T, et al. Hydrothermal circulation within modern sediment layer in submarine volcanoes, Wakaniko crater, south Kyushu, Japan[J]. Geochimica et Cosmochimica Acta, 2006, 70(S18): A441.
|
[6] |
Poulton S W, Canfield D E. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: implications for the evaluation of paleoseawater phosphate concentrations[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5883−5898. doi: 10.1016/j.gca.2006.01.030
|
[7] |
Rona P A. Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1): 1−104.
|
[8] |
Meinhardt A K, März C, Stein R, et al. Regional variations in sediment geochemistry on a transect across the Mendeleev Ridge (Arctic Ocean)[J]. Chemical Geology, 2014, 369: 1−11. doi: 10.1016/j.chemgeo.2014.01.011
|
[9] |
Radke L C, Heap A D, Douglas G, et al. A geochemical characterisation of deep-sea floor sediments of the northern Lord Howe Rise[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(7/8): 909−921.
|
[10] |
李诗颖, 吕士辉, 苏新, 等. 西南印度洋龙旂、断桥热液区沉积物中重矿物空间分布特征及其意义[J]. 海洋科学, 2018, 42(2): 10−22. doi: 10.11759/hykx20160928001
Li Shiying, Lü Shihui, Su Xin, et al. Heavy-mineralogical distribution characteristics of seafloor sediments from Longqi and Duanqiao hydrothermal fields in Southwest Indian Ridge and their geological inferences[J]. Marine Sciences, 2018, 42(2): 10−22. doi: 10.11759/hykx20160928001
|
[11] |
Liao Shili, Tao Chunhui, Li Huaiming, et al. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge[J]. Marine Geology, 2018, 398: 22−34. doi: 10.1016/j.margeo.2017.12.005
|
[12] |
Li Zhenggang, Chu Fengyou, Jin Lu, et al. Major and trace element composition of surface sediments from the Southwest Indian Ridge: evidence for the incorporation of a hydrothermal component[J]. Acta Oceanologica Sinica, 2016, 35(2): 101−108. doi: 10.1007/s13131-015-0678-8
|
[13] |
梁裕扬, 李家彪, 李守军, 等. 西南印度洋脊中段Indomed-Gallieni洋中脊岩浆—构造动力模式[J]. 地球物理学报, 2014, 57(9): 2993−3005. doi: 10.6038/cjg20140924
Liang Yuyang, Li Jiabiao, Li Shoujun, et al. The Magmato-tectonic dynamic model for the Indomed-Gallieni segment of the central southwest Indian ridge[J]. Chinese Journal of Geophysics, 2014, 57(9): 2993−3005. doi: 10.6038/cjg20140924
|
[14] |
张涛, Lin Jian, 高金耀. 西南印度洋中脊热液区的岩浆活动与构造特征[J]. 中国科学: 地球科学, 2013, 43(11): 1834−1846. doi: 10.1360/zd-2013-43-11-1834
Zhang Tao, Lin Jian, Gao Jinyao. Magmatism and tectonic processes in area a hydrothermal vent on the Southwest Indian Ridge[J]. Scientia Sinica: Terrae, 2013, 43(11): 1834−1846. doi: 10.1360/zd-2013-43-11-1834
|
[15] |
Jenson S K. Applications of hydrologic information automatically extracted from digital elevation models[J]. Hydrological Processes, 1991, 5(1): 31−44. doi: 10.1002/hyp.3360050104
|
[16] |
Jain M K, Singh V P. DEM-based modelling of surface runoff using diffusion wave equation[J]. Journal of Hydrology, 2005, 302(1/4): 107−126.
|
[17] |
Band L E. Topographic partition of watersheds with digital elevation models[J]. Water Resources Research, 1986, 22(1): 15−24. doi: 10.1029/WR022i001p00015
|
[18] |
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0
|
[19] |
Tao Chunhui, Lin Jian, Guo Shiqin, et al. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian Ridge[J]. Geology, 2012, 40(1): 47−50. doi: 10.1130/G32389.1
|
[20] |
Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26): 2828. doi: 10.1007/s11434-011-4619-4
|
[21] |
陈杰, 李怀明, 张涛, 等. 西南印度洋中脊46°E−52.3°E段的岩浆供给特征及机制[C]//2017中国地球科学联合学术年会论文集 (二十八)——专题 56: 海洋地球物理. 北京: 中国地球物理学会, 2017.
Chen Jie, Li Huaiming, Zhang Tao, et al. Characteristics and mechanism of magma supply in the 46°E−52.3°E segment of the Southwest Indian Ridge[C]//Proceedings of 2017 Annual Meeting of Chinese Geoscience Union (28)−TOPIC 56: Marine Geophysics. Beijing: Chinese Geophysical Society, 2017.
|
[22] |
Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E)[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 22825−22843. doi: 10.1029/1999JB900195
|
[23] |
王伟, 牛雄伟, 阮爱国, 等. 西南印度洋中脊49.5°E离轴地壳结构[J]. 地球物理学报, 2018, 61(11): 4406−4417. doi: 10.6038/cjg2018L0742
Wang Wei, Niu Xiongwei, Ruan Aiguo, et al. Off-axis crustal structure at the Southwest Indian Ridge (49.5°E)[J]. Chinese Journal of Geophysics, 2018, 61(11): 4406−4417. doi: 10.6038/cjg2018L0742
|
[24] |
Daniel S, Mathilde C, Christine M, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: interaction with the Crozet hotspot?[J]. Geophysical Journal International, 2009, 179(2): 687−699. doi: 10.1111/j.1365-246X.2009.04308.x
|
[25] |
Meyzen C M, Blichert-Toft J, Ludden J N, et al. Isotopic portrayal of the Earth’s upper mantle flow field[J]. Nature, 2007, 447(7148): 1069−1074. doi: 10.1038/nature05920
|
[26] |
张华添. 极慢速扩张洋中脊构造模式及其成因机制: 以西南印度洋中脊46°−52°E段为例[D]. 北京: 北京大学, 2017.
Zhang Huatian. Tectonic model and its genetic mechanism of very-slow spreading ridges: insight from southwest Indian Ridge (46°−52°E)[D]. Beijing: Peking University, 2017.
|
[27] |
石春力, 李雪, 孙韧, 等. Arc Hydro模型在流域水文特征提取中的应用——以蓟县沙河流域为例[J]. 水资源与水工程学报, 2012, 23(1): 73−76, 80.
Shi Chunli, Li Xue, Sun Ren, et al. Application of Arc Hydro model to extracting hydrological information of Shahe River watershed[J]. Journal of Water Resources and Water Engineering, 2012, 23(1): 73−76, 80.
|
[28] |
Maidment D R, Morehouse S. Arc Hydro: GIS for Water Resources[M]. Redlands, Calif: ESRI Press, 2002.
|
[29] |
O’Callaghan J F, Mark D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision, Graphics, and Image Processing, 1984, 28(3): 323−344. doi: 10.1016/S0734-189X(84)80011-0
|
[30] |
Jenson S K, Domingue J O. Extracting topographic structure from digital elevation data for geographic information system analysis[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(11): 1593−1600.
|
[31] |
Tuppad P, Winchell M F, Wang X, et al. ArcAPEX: ArcGIS interface for agricultural policy environmental eXtender (APEX) hydrology/water quality model[J]. International Agricultural Engineering Journal, 2009, 18(1/2): 59−71.
|
[32] |
Zhan Xiaoyong, Huang Minlang. ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps[J]. Environmental Modelling & Software, 2004, 19(10): 875−879.
|
[33] |
陈建平, 任梦依, 方捷, 等. 洋中脊多金属硫化物成矿定量预测[M]. 北京: 科学出版社, 2017.
Chen Jianping, Ren Mengyi, Fang Jie, et al. Quantitative Prediction of Polymetallic Sulfide Mineralization in Mid-Ocean ridge[M]. Beijing: Science Press, 2017.
|
[34] |
Daesslé L W, Cronan D S, Marchig V, et al. Hydrothermal sedimentation adjacent to the propagating Valu Fa Ridge, Lau Basin, SW Pacific[J]. Marine Geology, 2000, 162(2/4): 479−500.
|
[35] |
Cave R R, German C R, Thomson J, et al. Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1905−1923. doi: 10.1016/S0016-7037(02)00823-2
|
[36] |
German C R. Hydrothermal activity on the eastern SWIR (50°–70°E): evidence from core–top geochemistry, 1887 and 1998[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7): 9103.
|
[37] |
Feely R A, Massoth G J, Baker E T, et al. Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B3): 3457−3468. doi: 10.1029/91JB03062
|
[38] |
Kondratenko A V, Egorov I V, Ivanov V N, et al. Engineering geological study of hydrothermal Polymetallic Sulphides ore fields[C]//The Proceedings of the 27th International Ocean and Polar Engineering Conference. San Francisco: International Society of Offshore and Polar Engineers, 2017.
|
[39] |
Liao Guanghong, Zhou Beifeng, Liang Chujin, et al. Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 836−860. doi: 10.1002/2015JC011053
|
[40] |
Wang Hu, Yang Qunhui, Ji Fuwu, et al. The geochemical characteristics and Fe (II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge[J]. Marine Chemistry, 2012, 134–135: 29−35. doi: 10.1016/j.marchem.2012.02.009
|