Citation: | Jiang Tingting,Ding Huiping,Feng Lijuan, et al. Isolation, identification and polyethylene-degrading characteristics of Bacillus LC-2[J]. Haiyang Xuebao,2021, 43(2):9–15 doi: 10.12284/hyxb2021036 |
[1] |
Green D S, Boots B, Blockley D J, et al. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning[J]. Environmental Science & Technology, 2015, 49(9): 5380−5389.
|
[2] |
Thompson R C, Moore C J, Vom Saal F S, et al. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2153−2166. doi: 10.1098/rstb.2009.0053
|
[3] |
Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782.
|
[4] |
Xu Xiyuan, Wang Shuai, Gao Fenglei, et al. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China’s coastal seawaters[J]. Marine Pollution Bulletin, 2019, 145: 278−286. doi: 10.1016/j.marpolbul.2019.05.036
|
[5] |
Mccormick A, Hoellein T J, Mason S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 2014, 48(20): 11863−11871. doi: 10.1021/es503610r
|
[6] |
Kalogerakis N, Karkanorachaki K, Kalogerakis G C, et al. Microplastics generation: onset of fragmentation of polyethylene films in marine environment mesocosms[J]. Frontiers in Marine Science, 2017, 4: 84.
|
[7] |
Chang Xiaoru, Xue Yuying, Li Jiangyan, et al. Potential health impact of environmental micro- and nanoplastics pollution[J]. Journal of Applied Toxicology, 2020, 40(1): 4−15. doi: 10.1002/jat.3915
|
[8] |
Ma Jie, Zhao Jinghua, Zhu Zhilin, et al. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride[J]. Environmental Pollution, 2019, 254: 113104.
|
[9] |
Qiao Ruxia, Deng Yongfeng, Zhang Shenghu, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236: 124334. doi: 10.1016/j.chemosphere.2019.07.065
|
[10] |
Tourinho P S, Koci V, Loureiro S, et al. Partitioning of chemical contaminants to microplastics: sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation[J]. Environmental Pollution, 2019, 252: 1246−1256.
|
[11] |
Camacho M, Herrera A, Gómez M, et al. Organic pollutants in marine plastic debris from Canary Islands beaches[J]. Science of the Total Environment, 2019, 662: 22−31. doi: 10.1016/j.scitotenv.2018.12.422
|
[12] |
Shen Maocai, Song Biao, Zeng Guangming, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution?[J]. Environmental Pollution, 2020, 263: 114469.
|
[13] |
Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis[J]. Journal of Applied Microbiology, 2005, 98(5): 1093−1100. doi: 10.1111/j.1365-2672.2005.02553.x
|
[14] |
Sivan A. New perspectives in plastic biodegradation[J]. Current Opinion in Biotechnology, 2011, 22(3): 422−426. doi: 10.1016/j.copbio.2011.01.013
|
[15] |
Raddadi N, Fava F. Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation[J]. Science of the Total Environment,, 2019, 679: 148−158. doi: 10.1016/j.scitotenv.2019.04.419
|
[16] |
Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India[J]. Marine Pollution Bulletin, 2013, 77(1/2): 100−106. doi: 10.1016/j.marpolbul.2013.10.025
|
[17] |
Yang Jun, Yang Yu, Wu Weimin, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776−13784. doi: 10.1021/es504038a
|
[18] |
Paco A, Duarte K, Da Costa J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum[J]. Science of the Total Environment, 2017, 586: 10−15. doi: 10.1016/j.scitotenv.2017.02.017
|
[19] |
Zhang Junqing, Gao Danling, Li Quanhao, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704: 135931. doi: 10.1016/j.scitotenv.2019.135931
|
[20] |
Lwanga E H, Thapa B, Yang Xiaomei, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753−757. doi: 10.1016/j.scitotenv.2017.12.144
|
[21] |
Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527−533. doi: 10.1016/j.chemosphere.2019.01.159
|
[22] |
Mehmood C T, Qazi I A, Hashmi I, et al. Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii[J]. International Biodeterioration & Biodegradation, 2016, 113: 276−286.
|
[23] |
Gulmine J V, Janissek P R, Heise H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing, 2002, 21(5): 557−563. doi: 10.1016/S0142-9418(01)00124-6
|
[24] |
Rajandas H, Parimannan S, Sathasivam K, et al. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation[J]. Polymer Testing, 2012, 31(8): 1094−1099. doi: 10.1016/j.polymertesting.2012.07.015
|
[25] |
Pometto III A L, Lee B T, Johnson K E. Production of an extracellular polyethylene-degrading enzyme(s) by streptomyces species[J]. Applied and Environmental Microbiology, 1992, 58(2): 731−733. doi: 10.1128/AEM.58.2.731-733.1992
|
[26] |
Fujisawa M, Hirai H, Nishida T. Degradation of polyethylene and Nylon-66 by the laccase-mediator system[J]. Journal of Polymers and the Environment, 2001, 9(3): 103−108. doi: 10.1023/A:1020472426516
|
[27] |
Ren Liu, Men Li’na, Zhang Zhiwei, et al. Biodegradation of polyethylene byEnterobacter sp. D1 from the guts of wax moth Galleria mellonella[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1941.
|
[28] |
代军, 晏华, 郭骏骏, 等. 低密度聚乙烯热氧老化特性[J]. 塑料, 2016, 45(6): 54−58, 68.
Dai Jun, Yan Hua, Guo Junjun, et al. Characterization of the degradation behavior of LDPE after artificial thermo-oxidative aging[J]. Plastics, 2016, 45(6): 54−58, 68.
|