Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Du Xing,Sun Yongfu,Song Yupeng, et al. Risk assessment of submarine landslide based on spectral clustering[J]. Haiyang Xuebao,2021, 43(1):93–101 doi: 10.12284/hyxb2021023
Citation: Du Xing,Sun Yongfu,Song Yupeng, et al. Risk assessment of submarine landslide based on spectral clustering[J]. Haiyang Xuebao,2021, 43(1):93–101 doi: 10.12284/hyxb2021023

Risk assessment of submarine landslide based on spectral clustering

doi: 10.12284/hyxb2021023
  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-02-23
  • Available Online: 2021-02-24
  • Publish Date: 2021-01-25
  • The risk assessment and zoning of submarine landslides can guide the site selection and risk prevention of offshore engineering facilities. In this paper, an unsupervised machine learning spectral analysis algorithm was used to evaluate the risk of submarine landslides in the Chengdao sea area of the Yellow River Estuary. A model of submarine landslides risk assessment with 9 input parameters, 4 output parameters and 0.08 as kernel function parameters is constructed. By using this model, the study area can be divided into 4 parts: high, quite high, quite low and low risk of submarine landslide. The comparison between the evaluation results and the distribution characteristics of geological environment factors show that the most important factors are the type of seafloor sediment and hydrodynamic action, and the most important trigger factor is liquefaction. The analysis results of model parameters present that the evaluation results with slightly lower accuracy can be obtained by reasonably simplifying the input factors, and the kernel function parameter is important index affecting the evaluation accuracy. The above research shows that the unsupervised machine learning algorithm can be well used in the risk assessment of submarine landslides, and the richness and accuracy of data categories are important factors affecting the assessment accuracy.
  • loading
  • [1]
    Solheim A, Bryn P, Berg K, et al. Ormen Lange–An Integrated Study for Safe Field Development in the Storegga Submarine Slide Area[M]. San Diego: Elsevier, 2005.
    [2]
    Bea R G. How sea floor slides affect offshore structures[J]. Oil & Gas Journal, 1971, 69(48): 88−92.
    [3]
    Hsu S, Sibuet J. Flow of turbidity current viewed from failures of telecommunication cables[C]//International Conference on Seafloor Mapping for Geohazard Assessment. Ischia, Italy: American Geophysical Union, 2009.
    [4]
    Kawamura K, Laberg J S, Kanamatsu T. Potential tsunamigenic submarine landslides in active margins[J]. Marine Geology, 2014, 356: 44−49. doi: 10.1016/j.margeo.2014.03.007
    [5]
    刘锋. 南海北部陆坡天然气水合物分解引起的海底滑坡与环境风险评价[D]. 青岛: 中国科学院海洋研究所, 2010.

    Liu Feng. A safety evaluation for submarine slope instability of the northern South China Sea due to gas hydrae dissociation[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2010.
    [6]
    胡光海. 东海陆坡海底滑坡识别及致滑因素影响研究[D]. 青岛: 中国海洋大学, 2010.

    Hu Guanghai. Identification of submarine landslides along the continental slope of the East China Sea and analysis of factors causing submarine landslides[D]. Qingdao: Ocean University of China, 2010.
    [7]
    Wang Weiwei, Wang Dawei, Wu Shiguo, et al. Submarine landslides on the north continental slope of the South China Sea[J]. Journal of Ocean University of China, 2018, 17(1): 83−100. doi: 10.1007/s11802-018-3491-0
    [8]
    Ilstad T, De Blasio F V, Elverhøi A, et al. On the frontal dynamics and morphology of submarine debris flows[J]. Marine Geology, 2004, 213(1/4): 481−497.
    [9]
    El-Ramly H, Morgenstern N R, Cruden D M. Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal, 2002, 39(3): 665−683. doi: 10.1139/t02-034
    [10]
    Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387−403.
    [11]
    Schwarz H U. Subaqueous Slope Failures: Experiments and Modern Occurences[M]. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung, 1982.
    [12]
    Bradshaw A S, Tappin D R, Rugg D. The kinematics of a debris avalanche on the Sumatra margin[M]//Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, Vol. 28. Dordrecht: Springer, 2010: 117–125.
    [13]
    Schofield A N. Use of centrifugal model testing to assess slope stability[J]. Canadian Geotechnical Journal, 1978, 15(1): 14−31. doi: 10.1139/t78-002
    [14]
    吴益平, 滕伟福, 李亚伟. 灰色–神经网络模型在滑坡变形预测中的应用[J]. 岩石力学与工程学报, 2007, 26(3): 632−636. doi: 10.3321/j.issn:1000-6915.2007.03.028

    Wu Yiping, Teng Weifu, Li Yawei. Application of grey-neural network model to landslide deformation prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 632−636. doi: 10.3321/j.issn:1000-6915.2007.03.028
    [15]
    Marjanović M, Bajat B, Abolmasov B, et al. Machine learning and landslide assessment in a GIS environment[M]//GeoComputational Analysis and Modeling of Regional Systems. New York: Springer, 2018: 191–213.
    [16]
    Lun N K, Liew M S, Matori A N, et al. Recent developments in machine learning applications in landslide susceptibility mapping[J]. AIP Conference Proceedings, 2017, 1905: 040022.
    [17]
    Pham B T, Prakash I, Bui D T. Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression Trees[J]. Geomorphology, 2018, 303: 256−270. doi: 10.1016/j.geomorph.2017.12.008
    [18]
    孙永福, 胡光海, 宋玉鹏, 等. 近海海底地质灾害预测评价及防控关键技术研究[R]. 青岛: 自然资源部第一海洋研究所, 2016.

    Sun Yongfu, Hu Guanghai, Song Yupeng, et al. Study on the key technology of prediction, evaluation and prevention of offshore submarine geological hazards[R]. Qingdao: First Institute of Oceanograpy, Ministry of Natural Resources, 2016.
    [19]
    杨作升, 陈卫民, 陈彰榕, 等. 黄河口水下滑坡体系[J]. 海洋与湖沼, 1994, 25(6): 573−581. doi: 10.3321/j.issn:0029-814X.1994.06.001

    Yang Zuosheng, Chen Weimin, Chen Zhangrong, et al. Subaqueous landslide system in the Huanghe River (Yellow River) delta[J]. Oceanologia et Limnologia Sinica, 1994, 25(6): 573−581. doi: 10.3321/j.issn:0029-814X.1994.06.001
    [20]
    Prior D B, Yang Z S, Bornhold B D, et al. The subaqueous delta of the modern Huanghe (Yellow River)[J]. Geo-Marine Letters, 1986, 6(2): 67−75. doi: 10.1007/BF02281642
    [21]
    彭俊, 陈沈良, 陈一强, 等. 黄河三角洲侵蚀性岸段水下岸坡地质灾害及其空间分布[J]. 海洋通报, 2014, 33(1): 1−6. doi: 10.11840/j.issn.1001-6392.2014.01.001

    Peng Jun, Chen Shenliang, Chen Yiqiang, et al. Geological hazards and their spatial distribution in the subaqueous slope at the erosive coast of the Yellow River delta[J]. Marine Science Bulletin, 2014, 33(1): 1−6. doi: 10.11840/j.issn.1001-6392.2014.01.001
    [22]
    杜星. 黄河口海底粉土波致孔压精细观测及液化评判方法[D]. 青岛: 国家海洋局第一海洋研究所, 2016.

    Du Xing. Fine observation of wave-induced pore water pressure and liquefaction evaluation method of seabed silt in Yellow River Estuary[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (169) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return