Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Shi Weibo,Wang Yi’nan,Wang Haowen, et al. Transcriptome analysis provides insights into the response of coelomocytes in polian vesicle and coelomic cavity of sea cucumber Apostichopus japonicus to evisceration[J]. Haiyang Xuebao,2021, 43(2):116–125 doi: 10.12284/hyxb2021016
Citation: Shi Weibo,Wang Yi’nan,Wang Haowen, et al. Transcriptome analysis provides insights into the response of coelomocytes in polian vesicle and coelomic cavity of sea cucumber Apostichopus japonicus to evisceration[J]. Haiyang Xuebao,2021, 43(2):116–125 doi: 10.12284/hyxb2021016

Transcriptome analysis provides insights into the response of coelomocytes in polian vesicle and coelomic cavity of sea cucumber Apostichopus japonicus to evisceration

doi: 10.12284/hyxb2021016
  • Received Date: 2020-05-23
  • Rev Recd Date: 2020-08-30
  • Available Online: 2021-01-21
  • Publish Date: 2021-03-02
  • Coelomocytes in Apostichopus japonicus, present in coelomic fluid and water-vascular system, are considered to participate in a variety of biological functions including nutrition transport, metabolism and immunity. In the process of evisceration, coelomocytes in coelom are nearly exhausted and then recovered in a short period. The polian vesicle, as the only remained internal organ after evisceration, shows positive response that coelomocytes within it increased rapidly. Coelomocytes in coelom are nearly exhausted after evisceration, and then recovered quickly. To further investigate the function and significance of the rapid increase of coelomocytes in the early stage of regeneration after evisceration, transcriptome sequencing was performed for coelomocytes in polian vesicle and coelom of A. japonicus at 6 h after evisceration and pre-evisceration, respectively. The gene expression differences of coelomocytes in polian vesicle and coelom after evisceration were analyzed compared to those of healthy A. japonicus. These results showed that 267 genes were differentially expressed in coelomocytes of polian vesicle at 6 h after evisceration, and most of these genes were enriched into the enzyme catalytic activity subclasses according to GO functional annotation and glycine, serine and threonine metabolism pathway according to KEGG pathways annotation, respectively. Additionally, 922 differential genes were significantly expressed in coelomocytes of coelom at 6 h after evisceration, and these genes were enriched into cell adhesion and biological adhesion subclasses according to GO functional annotation and ECM-receptor interaction, TGF-β signaling pathway, FoxO signaling pathway according to KEGG pathways annotation, respectively. The results provide an important basis for further functional research and the regeneration mechanism of coelomocytes after evisceration in A. japonicus.
  • loading
  • [1]
    Dornbos S Q. Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2/4): 225−239.
    [2]
    Yang Hongsheng, Hamel J F, Mercier A. The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture[M]. Boston, USA: Academic Press, 2015.
    [3]
    Li Qiang, Ren Yuan, Luan Linlin, et al. Localization and characterization of hematopoietic tissues in adult sea cucumber, Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2019, 84: 1−7.
    [4]
    Li Qiang, Qi Ruirong, Wang Yi’nan, et al. Comparison of cells free in coelomic and water-vascular system of sea cucumber, Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2013, 35(5): 1654−1657.
    [5]
    Ren Yuan, Zhang Jialin, Wang Yi’nan, et al. Non-specific immune factors differences in coelomic fluid from Polian vesicle and coelom of Apostichopus japonicus, and their early response after evisceration[J]. Fish & Shellfish Immunology, 2020, 98: 160−166.
    [6]
    Shukalyuk A I, Dolmatov L Y. Regeneration of the digestive tube in the holothurian Apostichopus japonicus after evisceration[J]. Russian Journal of Marine Biology, 2001, 27(3): 168−173. doi: 10.1023/A:1016717502616
    [7]
    王霞, 李霞. 仿刺参消化道的再生形态学与组织学[J]. 大连水产学院学报, 2007, 22(5): 340−346.

    Wang Xia, Li Xia. The morphological and histological observation of regeneration of alimentary tract in sea cucumber Apostichopus japonicus[J]. Journal of Dalian Fisheries University, 2007, 22(5): 340−346.
    [8]
    Sun Li’na, Xu Dongxue, Xu Qinzeng, et al. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 22: 39−49. doi: 10.1016/j.cbd.2017.02.004
    [9]
    Li Qiang, Ren Yuan, Liang Chunlei, et al. Regeneration of coelomocytes after evisceration in the sea cucumber, Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2018, 76: 266−271.
    [10]
    Liao Kuangming, Chao T B, Tian Yufeng, et al. Overexpression of the PSAT1 gene in nasopharyngeal carcinoma is an indicator of poor prognosis[J]. Journal of Cancer, 2016, 7(9): 1088−1094. doi: 10.7150/jca.15258
    [11]
    Yang Yi, Wu Jueheng, Cai Junchao, et al. PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells[J]. International Journal of Cancer, 2015, 136(4): E39−E50. doi: 10.1002/ijc.29150
    [12]
    Frantz C, Stewart K M, Weaver V M. The extracellular matrix at a glance[J]. Journal of Cell Science, 2010, 123(24): 4195−4200. doi: 10.1242/jcs.023820
    [13]
    Badylak S F. The extracellular matrix as a scaffold for tissue reconstruction[J]. Seminars in Cell & Developmental Biology, 2002, 13(5): 377−383.
    [14]
    Quinones J L, Rosa R, Ruiz D L, et al. Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima[J]. Developmental Biology, 2002, 250(1): 181−197. doi: 10.1006/dbio.2002.0778
    [15]
    García-Arrarás J E, Estrada-Rodgers L, Santiago R, et al. Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata)[J]. Journal of Experimental Zoology, 1998, 281(4): 288−304. doi: 10.1002/(SICI)1097-010X(19980701)281:4<288::AID-JEZ5>3.0.CO;2-K
    [16]
    孙丽娜. 仿刺参Apostichopus japonicas (Selenka)消化道再生的组织细胞特征与关键基因分析[D]. 青岛: 中国科学院海洋研究所, 2013.

    Sun Li’na. Histocytological events and analysis of key genes during intestine regeneration in sea cucumber Apostichopus japonicus (Selenka)[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2013.
    [17]
    Hetzel H R. Studies on holothurian coelomocytes. Ⅱ. The origin of coelomocytes and the formation of brown bodies[J]. The Biological Bulletin, 1965, 128(1): 102−111. doi: 10.2307/1539393
    [18]
    Endean R. The coelomocytes of Holothuria leucospilota[J]. Journal of Cell Science, 1958, 99(45): 47−60.
    [19]
    Borgne A, Ostvold A C, Flament S, et al. Intra-M phase-promoting factor phosphorylation of Cyclin B at the prophase/metaphase transition[J]. Journal of Biological Chemistry, 1999, 274(17): 11977−11986. doi: 10.1074/jbc.274.17.11977
    [20]
    Richardson H, Lew D J, Henze M, et al. Cyclin-B homologs in saccharomyces cerevisiae function in S phase and in G2[J]. Genes & Development, 1992, 6(11): 2021−2034.
    [21]
    Barr F A, Silljé H H W, Nigg E A. Polo-like kinases and the orchestration of cell division[J]. Nature Reviews Molecular Cell Biology, 2004, 5(6): 429−441. doi: 10.1038/nrm1401
    [22]
    Nigg E A. Polo-like kinases: positive regulators of cell division from start to finish[J]. Current Opinion in Cell Biology, 1998, 10(6): 776−783. doi: 10.1016/S0955-0674(98)80121-X
    [23]
    刘镕, 赵琴平, 董惠芬, 等. TGF-β信号传导通路及其生物学功能[J]. 中国病原生物学杂志, 2014, 9(1): 77−83.

    Liu Rong, Zhao Qinping, Dong Huifen, et al. The TGF-β signaling pathways and their biological functions[J]. Journal of Pathogen Biology, 2014, 9(1): 77−83.
    [24]
    Gamer L W, Wolfman N M, Celeste A J, et al. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos[J]. Developmental Biology, 1999, 208(1): 222−232. doi: 10.1006/dbio.1998.9191
    [25]
    Grogg M W, Call M K, Okamoto M, et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration[J]. Nature, 2005, 438(7069): 858−862. doi: 10.1038/nature04175
    [26]
    Mashanov V S, Zueva O R, Garcia-Arraras J E, et al. Expression of Wnt9, TCTP, and Bmp1/Tll in sea cucumber visceral regeneration[J]. Gene Expression Patterns, 2012, 12(1/2): 24−35.
    [27]
    Han M, Yang Xiangdong, Farrington J E, et al. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice[J]. Development, 2003, 130(21): 5123−5132. doi: 10.1242/dev.00710
    [28]
    Beck C W, Christen B, Barker D, et al. Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles[J]. Mechanisms of Development, 2006, 123(9): 674−688. doi: 10.1016/j.mod.2006.07.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views (267) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return