Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Tian Fenglin,Yuan Zhonghao,Liu Wei, et al. An automatic recognition algorithm of global mesoscale dipole based on eddy tracking data[J]. Haiyang Xuebao,2021, 43(1):122–136 doi: 10.12284/hyxb2021015
Citation: Tian Fenglin,Yuan Zhonghao,Liu Wei, et al. An automatic recognition algorithm of global mesoscale dipole based on eddy tracking data[J]. Haiyang Xuebao,2021, 43(1):122–136 doi: 10.12284/hyxb2021015

An automatic recognition algorithm of global mesoscale dipole based on eddy tracking data

doi: 10.12284/hyxb2021015
  • Received Date: 2020-03-16
  • Rev Recd Date: 2020-05-12
  • Available Online: 2021-02-24
  • Publish Date: 2021-01-25
  • It is a common ocean phenomenon that eddies attract each other and propagate in the form of dipole mode, and these dipoles play an important role in transporting seawater, nutrients and other substances. In this paper, a global dipole pair automatic recognition method based on the eddy trajectory data is proposed. By using the K–D tree for cutting space, the eddy trajectory data are calculated from January 1993 to September 2016, and a total of 86 662 westward moving dipoles and 30 590 eastward moving dipoles with a life cycle of more than 60 days are found. The global characteristics of the dipole that we detected are analyzed, and the reliability of the automatic recognition algorithm is verified by the comparison and test with sea surface temperature anomaly and sea surface salinity anomaly. Finally in this paper, the transmission modes and characteristics of dipoles are analyzed, including the characteristics of long life, high propagation speed and entanglement trajectory.
  • loading
  • [1]
    McWilliams J C. The nature and consequences of oceanic eddies[M]//Hecht M W, Hasumi H. Geophysical Monograph Series. Washington: American Geophysical Union, 2008: 5−15.
    [2]
    Chen Gengxin, Hou Yijun, Zhang Qilong, et al. The eddy pair off eastern Vietnam: interannual variability and impact on thermohaline structure[J]. Continental Shelf Research, 2010, 30(7): 715−723. doi: 10.1016/j.csr.2009.11.013
    [3]
    Callendar W, Klymak J M, Foreman M G G. Tidal generation of large sub-mesoscale eddy dipoles[J]. Ocean Science, 2011, 7(4): 487−502.
    [4]
    Hooker S B, Brown J W, Kirwan A D, et al. Kinematics of a warm-core dipole ring[J]. Journal of Geophysical Research, 1995, 100(C12): 24797−24809.
    [5]
    L'Hégaret P, Carton X, Ambar I, et al. Evidence of Mediterranean water dipole collision in the Gulf of Cadiz[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5337−5359. doi: 10.1002/2014JC009972
    [6]
    Hughes C W, Miller P I. Rapid water transport by long-lasting modon eddy pairs in the southern midlatitude oceans[J]. Geophysical Research Letters, 2017, 44(24): 12375−12384.
    [7]
    Apango-Figueroa E, Sánchez-Velasco L, Lavín M F, et al. Larval fish habitats in a mesoscale dipole eddy in the Gulf of California[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 103: 1−12.
    [8]
    Carton X, Daniault N, Alves J, et al. Meddy dynamics and interaction with neighboring eddies southwest of Portugal: observations and modeling[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06017.
    [9]
    Davies S M, Sánchez-Velasco L, Beier E, et al. Three-dimensional distribution of larval fish habitats in the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 101: 118−129.
    [10]
    de Ruijter W P M, van Aken H M, Beier E J, et al. Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(3): 383−400. doi: 10.1016/j.dsr.2003.10.011
    [11]
    Chu Xiaoqing, Dong Changming, Qi Yiquan. The influence of ENSO on an oceanic eddy pair in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1643−1652.
    [12]
    樊孝鹏, 黄大吉, 章本照. 南海的偶极子模式[J]. 浙江大学学报:工学版, 2006, 40(6): 956−960.

    Fan Xiaopeng, Huang Daji, Zhang Benzhao. Bipole mode in South China Sea[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(6): 956−960.
    [13]
    陈符森, 潘长明, 薄文波, 等. 南海涡动能比季节变化特征及机理分析[J]. 海洋通报, 2016, 35(4): 406−413. doi: 10.11840/j.issn.1001-6392.2016.04.007

    Chen Fusen, Pan Changming, Bo Wenbo, et al. Seasonal variations and analysis of lower-bound estimates on the percentage of eddy kinetic energy in the South China Sea[J]. Marine Science Bulletin, 2016, 35(4): 406−413. doi: 10.11840/j.issn.1001-6392.2016.04.007
    [14]
    杨秋明. 南印度洋副热带偶极子型海温异常与全球环流和我国降水变化的关系[J]. 海洋学报, 2006, 28(3): 47−56.

    Yang Qiuming. Indian Ocean subtropical dipole and variations of global circulations and rainfall in China[J]. Haiyang Xuebao, 2006, 28(3): 47−56.
    [15]
    徐海明, 张岚, 杜岩. 南印度洋偶极子及其影响研究进展[J]. 热带海洋学报, 2013, 32(1): 1−7. doi: 10.3969/j.issn.1009-5470.2013.01.001

    Xu Haiming, Zhang Lan, Du Yan. Research progress of southern Indian Ocean Dipole and its influence[J]. Journal of Tropical Oceanography, 2013, 32(1): 1−7. doi: 10.3969/j.issn.1009-5470.2013.01.001
    [16]
    Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
    [17]
    Sadarjoen I A, Post F H. Detection, quantification and tracking of vortices using streamline geometry[J]. Computers & Graphics, 2000, 24(3): 333−341.
    [18]
    Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2/4): 106−119.
    [19]
    Doglioli A M, Blanke B, Speich S, et al. Tracking coherent structures in a regional ocean model with wavelet analysis: application to cape basin eddies[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C05043.
    [20]
    Williams S, Hecht M, Petersen M, et al. Visualization and analysis of eddies in a global ocean simulation[J]. Computer Graphics Forum, 2011, 30(3): 991−1000. doi: 10.1111/j.1467-8659.2011.01948.x
    [21]
    Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [22]
    Faghmous J H, Frenger I, Yao Yuanshun, et al. A daily global mesoscale ocean eddy dataset from satellite altimetry[J]. Scientific Data, 2015, 2: 150028.
    [23]
    Haller G. Lagrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47(1): 137−162. doi: 10.1146/annurev-fluid-010313-141322
    [24]
    Onu K, Huhn F, Haller G. LCS tool: a computational platform for lagrangian coherent structures[J]. Journal of Computational Science, 2015, 7: 26−36.
    [25]
    Penven P, Echevin V, Pasapera J, et al. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru current system: a modeling approach[J]. Journal of Geophysical Research: Oceans, 2005, 110(C10): C10021. doi: 10.1029/2005JC002945
    [26]
    Chaigneau A, Eldin G, Dewitte B. Eddy activity in the four major upwelling systems from satellite altimetry (1992−2007)[J]. Progress in Oceanography, 2009, 83(1/4): 117−123.
    [27]
    Mason E, Pascual A, McWilliams J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1181−1188. doi: 10.1175/JTECH-D-14-00019.1
    [28]
    Tian Fenglin, Wu Di, Yuan Liming, et al. Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data[J]. International Journal of Remote Sensing, 2020, 41(8): 2835−2860. doi: 10.1080/01431161.2019.1694724
    [29]
    Liu Yingjie, Chen Ge, Sun Miao, et al. A parallel SLA-based algorithm for global mesoscale eddy identification[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(12): 2743−2754. doi: 10.1175/JTECH-D-16-0033.1
    [30]
    Bachman S D, Taylor J R. Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing[J]. Journal of Physical Oceanography, 2015, 46(3): 919−935.
    [31]
    郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quan’an, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [32]
    Xie Lingling, Zheng Quan’an, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
    [33]
    Qiu Bo, Miao Weifeng, Müller P. Propagation and decay of forced and free Baroclinic Rossby waves in off-equatorial oceans[J]. Journal of Physical Oceanography, 1997, 27(11): 2405−2417. doi: 10.1175/1520-0485(1997)027<2405:PADOFA>2.0.CO;2
    [34]
    Chelton D B, Schlax M G, Samelson R M, et al. Global observations of westward energy propagation in the ocean: Rossby waves or nonlinear eddies?[J]. Geophysical Research Letters, 2006, 34: L15606.
    [35]
    陈秋, 贾帅东, 刘现鹏. 一种格网树与KD树组合的水深数据索引方法[J]. 海洋测绘, 2019, 39(5): 18−20, 47. doi: 10.3969/j.issn.1671-3044.2019.05.005

    Chen Qiu, Jia Shuaidong, Liu Xianpeng. A data retrieve method based on grid tree and K-Dimension tree[J]. Hydrographic Surveying and Charting, 2019, 39(5): 18−20, 47. doi: 10.3969/j.issn.1671-3044.2019.05.005
    [36]
    Sun Miao, Tian Fenglin, Liu Yingjie, et al. An improved automatic algorithm for global eddy tracking using satellite altimeter data[J]. Remote Sensing, 2017, 9(3): 206. doi: 10.3390/rs9030206
    [37]
    Lynch C E, Prosser D T, Smith M J. An efficient actuating blade model for unsteady rotating system wake simulations[J]. Computers & Fluids, 2014, 92: 138−150.
    [38]
    徐驰, 陈桂英, 尚晓东, 等. 海洋中尺度涡旋源汇空间分布特征研究[J]. 热带海洋学报, 2013, 32(2): 37−46. doi: 10.3969/j.issn.1009-5470.2013.02.004

    Xu Chi, Chen Guiying, Shang Xiaodong, et al. The spatial distribution of sources and sinks of ocean mesoscale eddies[J]. Journal of Tropical Oceanography, 2013, 32(2): 37−46. doi: 10.3969/j.issn.1009-5470.2013.02.004
    [39]
    Stern M E. Minimal properties of planetary eddies[J]. Journal of Marine Research, 1975, 33(1): 1−13.
    [40]
    Manucharyan G E, Timmermans M L. Generation and separation of mesoscale eddies from surface ocean fronts[J]. Journal of Physical Oceanography, 2013, 43(12): 2545−2562. doi: 10.1175/JPO-D-13-094.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (222) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return