Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Zhou Xuan,Ye Xiaomin,Zhou Jiangtao, et al. Hourly sea surface temperature fusion based on Himawari-8 satellite[J]. Haiyang Xuebao,2021, 43(1):137–146 doi: 10.12284/hyxb2021011
Citation: Zhou Xuan,Ye Xiaomin,Zhou Jiangtao, et al. Hourly sea surface temperature fusion based on Himawari-8 satellite[J]. Haiyang Xuebao,2021, 43(1):137–146 doi: 10.12284/hyxb2021011

Hourly sea surface temperature fusion based on Himawari-8 satellite

doi: 10.12284/hyxb2021011
  • Received Date: 2019-11-26
  • Rev Recd Date: 2020-01-06
  • Available Online: 2021-02-24
  • Publish Date: 2021-01-25
  • Himawari-8 is a new generation geostationary meteorological satellite launched by the Japan Meteorological Agency, and provides the important observation data for merging hourly sea surface temperature (SST). This paper uses the optimal interpolation method to provide the hourly Northwest Pacific SST based on the Advanced Himawari Imagery(AHI) SST, the Global Change Observation Mission-Water (GCOM-W1) Advanced Microwave Scanning Radiometer 2 (AMSR2) SST and North-East Asian Regional–Global Ocean Observing System (NEAR-GOOS) SST. The diurnal SST variation and the bias between multi-source SSTs are the two significant factors affecting the accuracy of hourly SST fusion products. In order to make full use of SST at the adjacent time and improve the accuracy, a diurnal variation model of Himawari-8 AHI SST is established by using the matchup data set, which contains simultaneous Himawari-8 AHI SST and European Centre for Medium-Range Weather Forecasts wind data at the same location. In addition, a bias correction method based on Poisson’s equation is applied to correct GCOM-W1 AMSR2 SST biases relative to the AHI SST. The experimental results show that the diurnal warming calculated by the hourly SST fusion product is closely related to sea surface wind speed, which indirectly confirms the accuracy of the hourly SST fusion products. The root mean square difference and bias between the hourly SST fusion product and NEAR-GOOS SST are 0.89℃ and 0.09℃, respectively. The results show that the hourly SST fusion product is basically consistent with the in situ SST.
  • loading
  • [1]
    Eliassen A, Sawyer J S, Smagorinsky J. Upper air network requirements for numerical weather prediction[R]. Technical Note No 29. Geneva: World Meteorological Organization, 1954.
    [2]
    Reynolds R W, Smith T M. Improved global sea surface temperature analyses using optimum interpolation[J]. Journal of Climate, 1994, 7(6): 929−948.
    [3]
    Reynolds R W. A real-time global sea surface temperature analysis[J]. Journal of Climate, 1988, 1(1): 75−87.
    [4]
    Reynolds R W, Rayner N A, Smith T M, et al. An improved in situ and satellite SST analysis for climate[J]. Journal of Climate, 2002, 15(13): 1609−1625.
    [5]
    Reynolds R W, Smith T M, Liu C Y, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22): 5473−5496.
    [6]
    吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.

    Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103.
    [7]
    Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35−45.
    [8]
    Kurihara Y, Murakami H, Kachi M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite[J]. Geophysical Research Letters, 2016, 43(3): 1234−1240.
    [9]
    Hihara T, Kubota M, Okuro A. Evaluation of sea surface temperature and wind speed observed by GCOM-W1/AMSR2 using in situ data and global products[J]. Remote Sensing of Environment, 2015, 164: 170−178.
    [10]
    Gentemann C L, Donlon C J, Stuart-Menteth A, et al. Diurnal signals in satellite sea surface temperature measurements[J]. Geophysical Research Letters, 2003, 30(3): 1140.
    [11]
    Liou K N. An Introduction to Atmospheric Radiation[M]. 2nd. Amsterdam Boston: Academic Press, 2002.
    [12]
    Pérez P, Gangnet M, Blake A. Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3): 313−318.
    [13]
    葛仕明, 程义民, 曾丹, 等. 基于梯度场整体变分模型的无缝图像处理方法[J]. 中国科学院研究生院学报, 2006, 23(5): 665−670. doi: 10.3969/j.issn.1002-1175.2006.05.016

    Ge Shiming, Cheng Yimin, Zeng Dan, et al. Seamless image processing based on gradient field total variation model[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(5): 665−670. doi: 10.3969/j.issn.1002-1175.2006.05.016
    [14]
    徐旭光. 基于有限差分法的泊松方程算法研究与软件实现[D]. 成都: 电子科技大学, 2011.

    Xu Xuguang. Research and software implementation of Poisson equation algorithm based on the finite-difference method[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (646) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return