Citation: | Tian Zhipan,Tian Siquan,Dai Libin, et al. Stock assessment for Atlantic yellowfin tuna based on Bayesian state-space production model[J]. Haiyang Xuebao,2021, 43(2):67–77 doi: 10.12284/hyxb2021002 |
[1] |
Matsumoto T, Satoh K. Stock assessment for Atlantic yellowfin tuna using a non-equilibrium production model[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(2): 451−474.
|
[2] |
Satoh K, Yokoi H, Nishida T, et al. Stock assessment for Atlantic yellowfin tuna using age structured production model[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(2): 577−631.
|
[3] |
Tropical Species Group. Alternative virtual population analyses of yellowfin tuna (Thunnus albacares), 1970−2010[J]. ICCAT’s Collective Volume of Scientific Papers, 2012, 68(3): 1044−1059.
|
[4] |
Walter J, Sharma R. Atlantic ocean yellowfin tuna stock assessment 1950−2014 using stock synthesis[J]. ICCAT's Collective Volume of Scientific Papers, 2017, 73(2): 510−576.
|
[5] |
官文江, 田思泉, 朱江峰, 等. 渔业资源评估模型的研究现状与展望[J]. 中国水产科学, 2013, 20(5): 1112−1120. doi: 10.3724/SP.J.1118.2013.01112
Guan Wenjiang, Tian Siquan, Zhu Jiangfeng, et al. A review of fisheries stock assessment models[J]. Journal of Fishery Sciences of China, 2013, 20(5): 1112−1120. doi: 10.3724/SP.J.1118.2013.01112
|
[6] |
Winker H, Carvalho F, Kapur M. JABBA: Just another bayesian biomass assessment[J]. Fisheries Research, 2018, 204: 275−288. doi: 10.1016/j.fishres.2018.03.010
|
[7] |
Mcallister M, Pikitch E K, Babcock E A. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(9): 1871−1890. doi: 10.1139/f01-114
|
[8] |
Punt A E, Hilborn R. Fisheries stock assessment and decision analysis: The Bayesian approach[J]. Reviews in Fish Biology and Fisheries, 1997, 7(1): 35−63. doi: 10.1023/A:1018419207494
|
[9] |
Meyer R, Millar R B. BUGS in Bayesian stock assessments[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(6): 1078−1087. doi: 10.1139/f99-043
|
[10] |
Buckland S T, Newman K B, Thomas L, et al. State-space models for the dynamics of wild animal populations[J]. Ecological Modelling, 2004, 171(1/2): 157−175.
|
[11] |
De Bruyn P, Murua H, Aranda M. The Precautionary approach to fisheries management: How this is taken into account by tuna regional fisheries management organisations (RFMOs)[J]. Marine Policy, 2013, 38: 397−406. doi: 10.1016/j.marpol.2012.06.019
|
[12] |
International Commission for the Conservation of Atlantic Tunas(ICCAT). Report of the 2016 ICCAT yellowfin tuna stock assessment meeting[R]. San Sebastian, Spain: ICCAT, 2016.
|
[13] |
Satoh K, Matsumoto T. Japanese longline CPUE for yellowfin tuna (Thunnus albacares) in the Atlantic Ocean standardized using GLM up to 2014[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 270−289.
|
[14] |
Huang J H W. Standardized catch rate index for yellowfin tuna (Thunnus albacares) from the Taiwanese longline fishery in the Atlantic Ocean, 1970−2014[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 404−422.
|
[15] |
Satoh K, Matsumoto T. Exploration of historical changes of target species for Japanese longline in the Atlantic Ocean and application to standardization of CPUE of yellowfin[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 290−317.
|
[16] |
Walter J. Standardized catch rate in number and weight of yellowfin tuna (Thunnus albacares) from the United States pelagic longline fishery 1987−2015[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 323−368.
|
[17] |
Indian Ocean Tuan Commission (IOTC). Report of the fifth session of the IOTC working party on temperate tunas. (IOTC-2014-WPTmT05-R[E])[R]. Busan: 5th Working Party on Temperate Tunas, Indian Ocean Tuna Commission, 2014.
|
[18] |
Chen Jiahua, Chen Zehua. Extended Bayesian information criteria for model selection with large model spaces[J]. Biometrika, 2008, 95(3): 759−771. doi: 10.1093/biomet/asn034
|
[19] |
Mohn R. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data[J]. ICES Journal of Marine Science, 1999, 56(4): 473−488. doi: 10.1006/jmsc.1999.0481
|
[20] |
官文江, 高峰, 雷林, 等. 渔业资源评估中的回顾性问题[J]. 上海海洋大学学报, 2012, 21(5): 841−847.
Guan Wenjiang, Gao Feng, Lei Lin, et al. Retrospective problem in fishery stock assessment[J]. Journal of Shanghai Ocean University, 2012, 21(5): 841−847.
|
[21] |
吕翔. 大西洋金枪鱼资源开发与保护现状分析[D]. 上海: 上海海洋大学, 2016
Lü Xiang. Analysis of status with utilization and conservation of the tuna resources in the Atlantic Ocean[D]. Shanghai: Shanghai Ocean University, 2016.
|
[22] |
International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the working group to evaluate Atlantic yellowfin tuna[J]. ICCAT’s Collective Volume of Scientific Papers, 1994, 42(2): 1−116.
|
[23] |
International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the 2017 ICCAT Atlantic swordfish stock assessment session[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 74: 841−967.
|
[24] |
Winker H, Kerwath S, Merino G, et al. Bayesian state-space surplus production model JABBA assessment of Atlantic bigeye tuna (Thunnus obesus) stock[J]. ICCAT's Collective Volume of Scientific Papers, 2019, 75(7): 2129−2168.
|
[25] |
Mourato B L, Winker H, Carvalho F, et al. Stock assessment of Atlantic blue marlin (Makaira nigricans) using a Bayesian state-space surplus production model JABBA[J]. ICCAT’s Collective Volume of Scientific Papers, 2018, 75(5): 1003−1025.
|
[26] |
International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the Standing Committee on Research and Statistics (SCRS)[R]. Madrid, Spain: International Commission for the Conservation of Atlantic Tunas, 2018.
|
[27] |
Dortel E, Sardenne F, Bousquet N, et al. An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna[J]. Fisheries Research, 2014, 163: 69−84.
|
[28] |
Eveson J P, Million J, Sardenne F, et al. Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates[J]. Fisheries Research, 2015, 163: 58−68. doi: 10.1016/j.fishres.2014.05.016
|
[29] |
Zagaglia C R, Lorenzzetti J A, Stech J L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic[J]. Remote Sensing of Environment, 2004, 93(1/2): 267−281.
|
[30] |
官文江, 吴佳文. 剩余产量模型形状参数对印度洋黄鳍金枪鱼资源评估的影响[J]. 上海海洋大学学报, 2019, 28(2): 298−304.
Guan Wenjiang, Wu Jiawen. Impacts of shape parameter of surplus production model on stock assessment of Indian Ocean yellowfin tuna[J]. Journal of Shanghai Ocean University, 2019, 28(2): 298−304.
|
[31] |
Punt A E, Hilborn R. BAYES-SA-Bayesian stock assessment methods in fisheries. User’s manual[M]. Rome: FAO, 2001.
|
[32] |
Chen Y, Breen P A, Andrew N L. Impacts of outliers and mis-specification of priors on Bayesian fisheries-stock assessment[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(11): 2293−2305. doi: 10.1139/f00-208
|
[33] |
李纲, 陈新军, 官文江. 基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析[J]. 水产学报, 2010, 34(5): 740−750. doi: 10.3724/SP.J.1231.2010.05941
Li Gang, Chen Xinjun, Guan Wenjiang. Stock assessment and risk analysis of management strategies for Scomber japonicus in the East China Sea and Yellow Sea using a Bayesian approach[J]. Journal of Fisheries of China, 2010, 34(5): 740−750. doi: 10.3724/SP.J.1231.2010.05941
|
[34] |
Mcallister M K, Kirkwood G P. Bayesian stock assessment: a review and example application using the logistic model[J]. ICES Journal of Marine Science, 1998, 55(6): 1031−1060. doi: 10.1006/jmsc.1998.0425
|
[35] |
Myers R A, Hutchings J A, Barrowman N J. Why do fish stocks collapse? The example of cod in Atlantic Canada[J]. Ecological Applications, 1997, 7(1): 91−106. doi: 10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2
|
[36] |
张魁, 陈作志. 应用贝叶斯状态空间建模对东海带鱼的资源评估[J]. 中国水产科学, 2015, 22(5): 1015−1026.
Zhang Kui, Chen Zuozhi. Using Bayesian state-space modelling to assess Trichiurus japonicus stock in the East China Sea[J]. Journal of Fishery Sciences of China, 2015, 22(5): 1015−1026.
|
[37] |
张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378−1389.
Zhang Kui, Liu Qun, Liao Baochao, et al. Comparative effects of distorted fishery data on assessment results of two non-equilibrium surplusproduction models[J]. Journal of Fisheries of China, 2018, 42(9): 1378−1389.
|