Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 43 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Tian Zhipan,Tian Siquan,Dai Libin, et al. Stock assessment for Atlantic yellowfin tuna based on Bayesian state-space production model[J]. Haiyang Xuebao,2021, 43(2):67–77 doi: 10.12284/hyxb2021002
Citation: Tian Zhipan,Tian Siquan,Dai Libin, et al. Stock assessment for Atlantic yellowfin tuna based on Bayesian state-space production model[J]. Haiyang Xuebao,2021, 43(2):67–77 doi: 10.12284/hyxb2021002

Stock assessment for Atlantic yellowfin tuna based on Bayesian state-space production model

doi: 10.12284/hyxb2021002
  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-05-09
  • Available Online: 2020-12-24
  • Publish Date: 2021-03-02
  • Yellowfin tuna (Thunnus albacares) is an important fishing target for offshore fisheries worldwide. Stock assessment is essential for its fishery management of sustainable exploitation. According to catch and catch per unit effort (CPUE) data from the International Commission for Conservation of Atlantic Tunas (ICCAT), the Bayesian state space model was conducted to make stock assessment in an open environment (Just Another Bayesian Biomass Assessment) and to compare the effects of different surplus production forms and CPUE data on the assessment. The results showed that the model performed best with the Fox surplus production form and CPUE data of four fleets (United States, Venezuela, Japan and Chinese Taipei). The median and 95% confidence intervals for carrying capacity, intrinsic growth rate were 178 (140, 229)×104 t and 0.210 (0.159, 0.274), respectively. The current stock was not overfished (B/BMSY=1.109) and was not subject to overfishing (F/FMSY=0.893). Sensitivity analysis revealed that when the rates of reported catch divided by the actual catch were 70%, 80%, 90%, 110%, 120%, and 130%, the current biomass assessment results were higher with lower fishing rate, but the stock was still in a healthy status. When the total allowable catch (TAC) was set at 11×104 t, the stock would remain basically healthy until 2024. The results from this stock assessment is generally consistent with ICCAT's current stock assessment results, so it is recommended to set a TAC of 11×104 t to keep the stock status healthy and sustainable exploitation of this important fishery.
  • loading
  • [1]
    Matsumoto T, Satoh K. Stock assessment for Atlantic yellowfin tuna using a non-equilibrium production model[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(2): 451−474.
    [2]
    Satoh K, Yokoi H, Nishida T, et al. Stock assessment for Atlantic yellowfin tuna using age structured production model[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(2): 577−631.
    [3]
    Tropical Species Group. Alternative virtual population analyses of yellowfin tuna (Thunnus albacares), 1970−2010[J]. ICCAT’s Collective Volume of Scientific Papers, 2012, 68(3): 1044−1059.
    [4]
    Walter J, Sharma R. Atlantic ocean yellowfin tuna stock assessment 1950−2014 using stock synthesis[J]. ICCAT's Collective Volume of Scientific Papers, 2017, 73(2): 510−576.
    [5]
    官文江, 田思泉, 朱江峰, 等. 渔业资源评估模型的研究现状与展望[J]. 中国水产科学, 2013, 20(5): 1112−1120. doi: 10.3724/SP.J.1118.2013.01112

    Guan Wenjiang, Tian Siquan, Zhu Jiangfeng, et al. A review of fisheries stock assessment models[J]. Journal of Fishery Sciences of China, 2013, 20(5): 1112−1120. doi: 10.3724/SP.J.1118.2013.01112
    [6]
    Winker H, Carvalho F, Kapur M. JABBA: Just another bayesian biomass assessment[J]. Fisheries Research, 2018, 204: 275−288. doi: 10.1016/j.fishres.2018.03.010
    [7]
    Mcallister M, Pikitch E K, Babcock E A. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(9): 1871−1890. doi: 10.1139/f01-114
    [8]
    Punt A E, Hilborn R. Fisheries stock assessment and decision analysis: The Bayesian approach[J]. Reviews in Fish Biology and Fisheries, 1997, 7(1): 35−63. doi: 10.1023/A:1018419207494
    [9]
    Meyer R, Millar R B. BUGS in Bayesian stock assessments[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(6): 1078−1087. doi: 10.1139/f99-043
    [10]
    Buckland S T, Newman K B, Thomas L, et al. State-space models for the dynamics of wild animal populations[J]. Ecological Modelling, 2004, 171(1/2): 157−175.
    [11]
    De Bruyn P, Murua H, Aranda M. The Precautionary approach to fisheries management: How this is taken into account by tuna regional fisheries management organisations (RFMOs)[J]. Marine Policy, 2013, 38: 397−406. doi: 10.1016/j.marpol.2012.06.019
    [12]
    International Commission for the Conservation of Atlantic Tunas(ICCAT). Report of the 2016 ICCAT yellowfin tuna stock assessment meeting[R]. San Sebastian, Spain: ICCAT, 2016.
    [13]
    Satoh K, Matsumoto T. Japanese longline CPUE for yellowfin tuna (Thunnus albacares) in the Atlantic Ocean standardized using GLM up to 2014[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 270−289.
    [14]
    Huang J H W. Standardized catch rate index for yellowfin tuna (Thunnus albacares) from the Taiwanese longline fishery in the Atlantic Ocean, 1970−2014[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 404−422.
    [15]
    Satoh K, Matsumoto T. Exploration of historical changes of target species for Japanese longline in the Atlantic Ocean and application to standardization of CPUE of yellowfin[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 290−317.
    [16]
    Walter J. Standardized catch rate in number and weight of yellowfin tuna (Thunnus albacares) from the United States pelagic longline fishery 1987−2015[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 73(1): 323−368.
    [17]
    Indian Ocean Tuan Commission (IOTC). Report of the fifth session of the IOTC working party on temperate tunas. (IOTC-2014-WPTmT05-R[E])[R]. Busan: 5th Working Party on Temperate Tunas, Indian Ocean Tuna Commission, 2014.
    [18]
    Chen Jiahua, Chen Zehua. Extended Bayesian information criteria for model selection with large model spaces[J]. Biometrika, 2008, 95(3): 759−771. doi: 10.1093/biomet/asn034
    [19]
    Mohn R. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data[J]. ICES Journal of Marine Science, 1999, 56(4): 473−488. doi: 10.1006/jmsc.1999.0481
    [20]
    官文江, 高峰, 雷林, 等. 渔业资源评估中的回顾性问题[J]. 上海海洋大学学报, 2012, 21(5): 841−847.

    Guan Wenjiang, Gao Feng, Lei Lin, et al. Retrospective problem in fishery stock assessment[J]. Journal of Shanghai Ocean University, 2012, 21(5): 841−847.
    [21]
    吕翔. 大西洋金枪鱼资源开发与保护现状分析[D]. 上海: 上海海洋大学, 2016

    Lü Xiang. Analysis of status with utilization and conservation of the tuna resources in the Atlantic Ocean[D]. Shanghai: Shanghai Ocean University, 2016.
    [22]
    International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the working group to evaluate Atlantic yellowfin tuna[J]. ICCAT’s Collective Volume of Scientific Papers, 1994, 42(2): 1−116.
    [23]
    International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the 2017 ICCAT Atlantic swordfish stock assessment session[J]. ICCAT’s Collective Volume of Scientific Papers, 2017, 74: 841−967.
    [24]
    Winker H, Kerwath S, Merino G, et al. Bayesian state-space surplus production model JABBA assessment of Atlantic bigeye tuna (Thunnus obesus) stock[J]. ICCAT's Collective Volume of Scientific Papers, 2019, 75(7): 2129−2168.
    [25]
    Mourato B L, Winker H, Carvalho F, et al. Stock assessment of Atlantic blue marlin (Makaira nigricans) using a Bayesian state-space surplus production model JABBA[J]. ICCAT’s Collective Volume of Scientific Papers, 2018, 75(5): 1003−1025.
    [26]
    International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the Standing Committee on Research and Statistics (SCRS)[R]. Madrid, Spain: International Commission for the Conservation of Atlantic Tunas, 2018.
    [27]
    Dortel E, Sardenne F, Bousquet N, et al. An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna[J]. Fisheries Research, 2014, 163: 69−84.
    [28]
    Eveson J P, Million J, Sardenne F, et al. Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates[J]. Fisheries Research, 2015, 163: 58−68. doi: 10.1016/j.fishres.2014.05.016
    [29]
    Zagaglia C R, Lorenzzetti J A, Stech J L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic[J]. Remote Sensing of Environment, 2004, 93(1/2): 267−281.
    [30]
    官文江, 吴佳文. 剩余产量模型形状参数对印度洋黄鳍金枪鱼资源评估的影响[J]. 上海海洋大学学报, 2019, 28(2): 298−304.

    Guan Wenjiang, Wu Jiawen. Impacts of shape parameter of surplus production model on stock assessment of Indian Ocean yellowfin tuna[J]. Journal of Shanghai Ocean University, 2019, 28(2): 298−304.
    [31]
    Punt A E, Hilborn R. BAYES-SA-Bayesian stock assessment methods in fisheries. User’s manual[M]. Rome: FAO, 2001.
    [32]
    Chen Y, Breen P A, Andrew N L. Impacts of outliers and mis-specification of priors on Bayesian fisheries-stock assessment[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(11): 2293−2305. doi: 10.1139/f00-208
    [33]
    李纲, 陈新军, 官文江. 基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析[J]. 水产学报, 2010, 34(5): 740−750. doi: 10.3724/SP.J.1231.2010.05941

    Li Gang, Chen Xinjun, Guan Wenjiang. Stock assessment and risk analysis of management strategies for Scomber japonicus in the East China Sea and Yellow Sea using a Bayesian approach[J]. Journal of Fisheries of China, 2010, 34(5): 740−750. doi: 10.3724/SP.J.1231.2010.05941
    [34]
    Mcallister M K, Kirkwood G P. Bayesian stock assessment: a review and example application using the logistic model[J]. ICES Journal of Marine Science, 1998, 55(6): 1031−1060. doi: 10.1006/jmsc.1998.0425
    [35]
    Myers R A, Hutchings J A, Barrowman N J. Why do fish stocks collapse? The example of cod in Atlantic Canada[J]. Ecological Applications, 1997, 7(1): 91−106. doi: 10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2
    [36]
    张魁, 陈作志. 应用贝叶斯状态空间建模对东海带鱼的资源评估[J]. 中国水产科学, 2015, 22(5): 1015−1026.

    Zhang Kui, Chen Zuozhi. Using Bayesian state-space modelling to assess Trichiurus japonicus stock in the East China Sea[J]. Journal of Fishery Sciences of China, 2015, 22(5): 1015−1026.
    [37]
    张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378−1389.

    Zhang Kui, Liu Qun, Liao Baochao, et al. Comparative effects of distorted fishery data on assessment results of two non-equilibrium surplusproduction models[J]. Journal of Fisheries of China, 2018, 42(9): 1378−1389.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article views (534) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return