留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物膜对潮滩动力地貌演变影响的数值模拟研究

梁梦娇 周怡 张荷悦 李欢 康彦彦 王大伟 周曾

梁梦娇,周怡,张荷悦,等. 生物膜对潮滩动力地貌演变影响的数值模拟研究[J]. 海洋学报,2024,46(x):1–14
引用本文: 梁梦娇,周怡,张荷悦,等. 生物膜对潮滩动力地貌演变影响的数值模拟研究[J]. 海洋学报,2024,46(x):1–14
Liang Mengjiao,Zhou Yi,Zhang Heyue, et al. Numerical simulation of the influence of biofilm on the dynamic geomorphological evolution of tidal flats[J]. Haiyang Xuebao,2024, 46(x):1–14
Citation: Liang Mengjiao,Zhou Yi,Zhang Heyue, et al. Numerical simulation of the influence of biofilm on the dynamic geomorphological evolution of tidal flats[J]. Haiyang Xuebao,2024, 46(x):1–14

生物膜对潮滩动力地貌演变影响的数值模拟研究

基金项目: 中央高校基本科研业务费专项资金资助(编号:B230201061)。
详细信息
    作者简介:

    梁梦娇(1997—),女,山东省菏泽市人。主要从事河口海岸水动力泥沙模拟研究。E-mail:Liang.MengJiao@outlook.com

    通讯作者:

    周曾(1986—),教授,主要从事河口海岸地貌学研究。E-mail: zeng.zhou@hhu.edu.cn

Numerical simulation of the influence of biofilm on the dynamic geomorphological evolution of tidal flats

  • 摘要: 河口海岸潮滩湿地是一个复杂的生态系统,其地貌的形成和演变是水动力、泥沙输移和生物过程等多种因子相互作用的结果,特别是,探究潮滩生物过程并阐明其生物-物理效应是当前海洋科学领域研究的热点和难点。本文聚焦微生物生物膜,构建了耦合生物膜与水动力、沉积物输移、地貌演变的二维生物动力地貌模型,探究了生物膜在潮滩泥沙输移和地貌演变中发挥的作用。利用文献数据验证生物动力地貌模型,模型结果与文献数据吻合较好,表明所构建的模型可以较好地模拟出生物膜的增长规律及年际变化情况。结果表明,当水动力较弱时,在有生物膜作用的潮滩上,潮沟向陆侧延伸更充分,呈现出树杈状分布,潮间带区域的潮沟两侧分布有生物膜。通过对潮沟形态进行定量分析,发现生物膜的存在促进了潮沟数量增加,并向纵深方向发展,同时限制了其宽度的增加。相较于没有生物膜影响的潮滩,潮沟的平均深度增加,总面积减小,总长度增加,平均宽度减小,总体积增加。研究结果有助于加深对生物膜在潮滩地貌塑造中的作用机制认识,为海岸带保护与生态修复工程提供科学依据。
  • 图  1  生物膜模型中生物量随时间的变化图

    Fig.  1  Variation of biomass over time in biofilm models

    图  2  生物量与温度的年际变化(a);黏土组分的临界起动切应力年际变化(b)

    Fig.  2  Interannual changes in biomass and temperature (a); interannual variation of critical shear stress of clay components (b)

    图  3  生物量年际变化:(a)不同泥沙组分;(b)不同温度;(c)水深对光照强度的不同衰减作用

    Fig.  3  Interannual variation of biomass:(a) different sediment components;(b) different temperatures;(c) different attenuation effects of water depth on light intensity

    图  4  初始地形图(a)和初始剖面图(b)

    Fig.  4  Initial landform (a) and Initial profile (b)

    图  5  波流作用下1年、3年和10年后潮滩地貌(a–c)和潮滩上生物量分布(d–f)

    Fig.  5  The tidal flats landforms (a–c) and biomass distribution (d–f) on tidal flats after 1 year, 3 years and 10 years under wave flow, respectively

    图  6  生物膜存在时的潮滩地貌演变过程(a–c)和无生物膜存在时的潮滩演变过程(d–f)

    Fig.  6  The evolution process of tidal flat landform in the presence of biofilm (a–c) and the evolution process of tidal flat without biofilm (d–f)

    图  7  垂直于岸线断面x = 5 km高程变化情况(a)和平行于岸线断面y = 10 km高程变化情况(b)

    Fig.  7  The elevation change of the section perpendicular to the shoreline x = 5 km (a) and the elevation change of y = 10 km parallel to the shoreline section (b)

    图  8  生物膜潮滩和无生物膜潮滩10年后平行于岸线断面高程变化

    a. y = 10 km断面;b. y = 12 km断面

    Fig.  8  Elevation changes of parallel shoreline section after 10 years for biofilm and non-biofilm tidal flat

    a. y = 10 km section; b. y = 12 km section

    图  9  波流作用下有无生物膜作用时潮沟发育的形态参数统计

    a. 潮沟总体积;b. 潮沟总面积;c. 潮沟平均深度;d. 潮沟总长度;e. 潮沟平均宽度

    Fig.  9  Statistics of morphological parameters of tidal gully development with or without biofilm under the wave

    a. Total volume of channel; b. total area of channel; c. average depth of channel; d. total length of channel; e. average width of channel

    表  1  参数设置及取值表

    Tab.  1  Parameter setting and value table

    变量单位取值范围默认取值含义取值依据
    μmaxday-10.007 8~1.111.07参考温度下的最大生长速率Uehlinger等[34]
    Labiod等[35]
    s(mg Chl-a/ m2) -10.016 2~0.5080.02半饱和常数Uehlinger等[34]
    Labiod等[35]
    IμE/m2/s每日平均光强Mariotti等[29]
    KIμE/m2/s0.1~5025半饱和光系数Boulêtreau等[36]
    IoμE/m2/s0~2 000300水面上的每日平均光强Uehlinger等[34]
    kdm-10.1~31.5光强随水深的衰减系数Lawson等[37]
    β°C-1–0.205~0.022 40.01温度对生物膜发育的影响系数Uehlinger等[34]
    To°C20参考温度Uehlinger等[34]
    Tmax°C33最高温度江苏盐城
    Tmin°C–1最低温度江苏盐城
    εday-1~(0.001~0.1)u*0.2整体衰减系数Uehlinger等[34]
    Labiod等[35]
    Xbmg Chl-a/m24.4×10-5~1.681最小生物量Mariotti等[29]
    αPa/(mg Chl-a/m2)0.001~0.020.001随生物膜生长τcr的增长系数Le Hir等[33]
    τcr,oPa0.05~10.2无生物膜的泥沙临界起动切应力Whitehouse等[38]
    MC0~10.5某一泥沙组分下生物量变化的系数Riethmuller等[32]
    mct0~10.5底床中值粒径小于63μm泥沙的总含量Riethmuller等[32]
    Dminm0~0.10.01生物膜生存的平均高潮下的最小深度Mariotti等[39]
    Dm河床高度与高潮位的差根据模型设置计算取值
    下载: 导出CSV

    表  2  模型参数设置汇总表

    Tab.  2  Summary of model parameter settings

    参数项 设置值
    时间步长 0.3 min
    谢才系数 65 m1/2/s
    水平涡粘系数 1 m2/s
    水平涡粘扩散系数 10 m2/s
    潮流边界条件 M2,S2
    粉砂 干容重 1 600 kg/m3
    中值粒径 50 μm
    底床厚度 5 m
    粘土 沉速 0.5 mm/s
    临界起动切应力 0.2 N/m2
    临界沉降切应力 1 000 N/m2
    冲刷系数 5×10−4 kg/(m2·s)
    底床厚度 10 m
    下载: 导出CSV

    表  3  水动力条件工况设置

    Tab.  3  Hydrodynamic condition setting

    变量 单位 取值 含义
    μmax day−1 0.9 参考温度下的最大生长速率
    s (mg Chl-a/ m2)−1 0.02 半饱和常数
    KI μE/m2/s 25 半饱和光系数
    Io μE/m2/s 300 水面上的每日平均光强
    kd m−1 1.5 光强随水深的衰减系数
    β °C−1 0.022 4 温度对生物膜发育的影响系数
    ε day−1 0.2 整体衰减系数
    Xb mg Chl-a/m2 1 最小生物量
    α Pa/(mg Chl-a/m2) 0.001 6 随生物膜生长τcr的增长系数
    To °C 20 参考温度
    Tmax °C 33 最高温度
    Tmin °C −1 最低温度
    下载: 导出CSV

    表  4  第10年潮沟形态参数

    Tab.  4  Morphological parameters of tidal channel in the 10th year

    形态参数 无生物膜-潮沟 生物膜-潮沟 同比相差
    潮间带下部 潮间带中部 潮滩 潮间带下部 潮间带中部 潮滩 潮间带下部 潮间带中部 潮滩
    总体积(106 m3 0.32 2.66 4.57 0.46 3.50 5.58 45.2% 31.6% 22.1%
    总面积(106 m2 0.27 2.44 4.12 0.32 2.22 3.83 19.8% −9.0% −7.0%
    平均深度(m) 1.19 1.09 1.11 1.44 1.57 1.46 21.2% 44.6% 31.5%
    总长度(104 m) 0.21 4.13 5.30 0.24 4.18 5.42 13.5% 1.1% 2.3%
    平均宽度(m) 127.45 59.20 77.87 134.53 53.26 70.70 5.6% −10.0% −9.2%
    下载: 导出CSV
  • [1] 张长宽, 徐孟飘, 周曾, 等. 潮滩剖面形态与泥沙分选研究进展[J]. 水科学进展, 2018, 29(2): 269−282.

    Zhang Changkuan, Xu Mengpiao, Zhou Zeng, et al. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats[J]. Advances in Water Science, 2018, 29(2): 269−282.
    [2] 周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3): 470−484.

    Zhou Zeng, Chen Lei, Lin Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3): 470−484.
    [3] 龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291

    Gong Zheng, Chen Xindi, Zhou Zeng, et al. The roles of biological factors in coastal sediment transport: a review[J]. Chinese Science Bulletin, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291
    [4] Zhou Zeng, Olabarrieta M, Stefanon L, et al. A comparative study of physical and numerical modeling of tidal network ontogeny[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(4): 892−912. doi: 10.1002/2014JF003092
    [5] Xu Fan, Coco G, Zhou Zeng, et al. A numerical study of equilibrium states in tidal network morphodynamics[J]. Ocean Dynamics, 2017, 67(12): 1593−1607. doi: 10.1007/s10236-017-1101-0
    [6] Schuerch M, Spencer T, Temmerman S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722): 231−234. doi: 10.1038/s41586-018-0476-5
    [7] 方红卫, 赵慧明, 何国建, 等. 泥沙颗粒生长生物膜前后表面变化的试验研究[J]. 水利学报, 2011, 42(3): 278−283.

    Fang Hongwei, Zhao Huiming, He Guojian, et al. Experiment of particles' morphology variation after biofilm growth on sediments[J]. Journal of Hydraulic Engineering, 2011, 42(3): 278−283.
    [8] Chen Xindi, Zhang C K, Paterson D M, et al. Hindered erosion: the biological mediation of noncohesive sediment behavior[J]. Water Resources Research, 2017, 53(6): 4787−4801. doi: 10.1002/2016WR020105
    [9] Andersen T J, Lund-Hansen L C, Pejrup M, et al. Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition[J]. Journal of Marine Systems, 2005, 55(3/4): 123−138.
    [10] de Deckere E M G T, Tolhurst T J, de Brouwer J F C. Destabilization of cohesive intertidal sediments by infauna[J]. Estuarine, Coastal and Shelf Science, 2001, 53(5): 665−669. doi: 10.1006/ecss.2001.0811
    [11] Droppo I G. Biofilm structure and bed stability of five contrasting freshwater sediments[J]. Marine and Freshwater Research, 2009, 60(7): 690−699. doi: 10.1071/MF08019
    [12] Gerbersdorf S U, Jancke T, Westrich B, et al. Microbial stabilization of riverine sediments by extracellular polymeric substances[J]. Geobiology, 2008, 6(1): 57−69. doi: 10.1111/j.1472-4669.2007.00120.x
    [13] Tolhurst T J, Gust G, Paterson D M. The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability[J]. Proceedings in Marine Science, 2002, 5: 409−425.
    [14] Chen Xindi, Zhang C K, Zhou Z, et al. Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(12): 3113−3125. doi: 10.1002/2017JG004050
    [15] Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency[J]. Coastal Engineering, 1996, 29(1/2): 47−78.
    [16] Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth. Part 2. Spectral evolution[J]. Coastal Engineering, 1996, 29(1/2): 79−99.
    [17] Tao Jianfeng, Wang Zhengbing, Zhou Zeng, et al. A morphodynamic modeling study on the formation of the large‐scale radial sand ridges in the Southern Yellow Sea[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(7): 1742−1761. doi: 10.1029/2018JF004866
    [18] Roberts W, Le Hir P, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10/11): 1079−1097.
    [19] Green M O, Coco G. Review of wave-driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 2014, 52(1): 77−117. doi: 10.1002/2013RG000437
    [20] Soulsby R L. Dynamics of marine sands: a manual for practical applications[J]. Oceanographic Literature Review, 1997, 44(9): 947.
    [21] Partheniades E. Erosion and deposition of cohesive soils[J]. Journal of the Hydraulics Division, 1965, 91(1): 105−139. doi: 10.1061/JYCEAJ.0001165
    [22] Winterwerp J C. On the sedimentation rate of cohesive sediment[J]. Proceedings in Marine Science, 2007, 8: 209−226.
    [23] Engelund F, Hansen E. A monograph on sediment transport in alluvial streams[R]. Denmark: Tekniskforlag Skelbrekgade 4 Copenhagen V, 1967.
    [24] Bagnold R A. An approach to the sediment transport problem from general physics[R]. USGS Numbered Series, 1966. (查阅网上资料, 未找到对应的出版地信息, 请确认)

    Bagnold R A. An approach to the sediment transport problem from general physics[R]. USGS Numbered Series, 1966. (查阅网上资料, 未找到对应的出版地信息, 请确认)
    [25] van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993: I11.
    [26] Roelvink J A. Coastal morphodynamic evolution techniques[J]. Coastal Engineering, 2006, 53(2/3): 277−287.
    [27] 徐孟飘, 东培华, 马骏, 等. 大小潮作用对潮滩沉积物层理影响的数值模拟研究[J]. 海洋学报, 2021, 43(10): 70−80.

    Xu Mengpiao, Dong Peihua, Ma Jun, et al. The effects of spring-neap tide on sediment bedding on tidal flats: a numerical study[J]. Haiyang Xuebao, 2021, 43(10): 70−80.
    [28] van der Wal D, Wielemaker-van den Dool A, Herman P M J. Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems[J]. Ecosystems, 2010, 13(2): 338−351. doi: 10.1007/s10021-010-9322-9
    [29] Mariotti G, Fagherazzi S. Modeling the effect of tides and waves on benthic biofilms[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G04010.
    [30] Nguyen H M, Bryan K R, Pilditch C A, et al. Influence of ambient temperature on erosion properties of exposed cohesive sediment from an intertidal mudflat[J]. Geo-Marine Letters, 2019, 39(4): 337−347. doi: 10.1007/s00367-019-00579-x
    [31] Fagherazzi S, Fitzgerald D M, Fulweiler R W, et al. Ecogeomorphology of tidal flats[J]. Treatise on Geomorphology, 2013, 12: 201−220.
    [32] Riethmüller R, Heineke M, Kühl H, et al. Chlorophyll a concentration as an index of sediment surface stabilisation by microphytobenthos?[J]. Continental Shelf Research, 2000, 20(10/11): 1351−1372.
    [33] Le Hir P, Monbet Y, Orvain F. Sediment erodability in sediment transport modelling: can we account for biota effects?[J]. Continental Shelf Research, 2007, 27(8): 1116−1142. doi: 10.1016/j.csr.2005.11.016
    [34] Uehlinger U, Bührer H, Reichert P. Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modelling[J]. Freshwater Biology, 1996, 36(2): 249−263. doi: 10.1046/j.1365-2427.1996.00082.x
    [35] Labiod C, Godillot R, Caussade B. The relationship between stream periphyton dynamics and near-bed turbulence in rough open-channel flow[J]. Ecological Modelling, 2007, 209(2/4): 78−96.
    [36] Boulêtreau S, Izagirre O, Garabétian F, et al. Identification of a minimal adequate model to describe the biomass dynamics of river epilithon[J]. River Research and Applications, 2008, 24(1): 36−53. doi: 10.1002/rra.1046
    [37] Lawson S E, Wiberg P L, McGlathery K J, et al. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon[J]. Estuaries and Coasts, 2007, 30(1): 102−112. doi: 10.1007/BF02782971
    [38] Whitehouse R, Soulsby R, Roberts W, et al. Dynamics of Estuarine Muds: A Manual for Practical Applications[M]. London: T. Telford, 2000.
    [39] Mariotti G, Fagherazzi S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F1): F01004.
    [40] Zhu Q, van Prooijen B C, Maan D C, et al. The heterogeneity of mudflat erodibility[J]. Geomorphology, 2019, 345: 106834. doi: 10.1016/j.geomorph.2019.106834
    [41] Guarini J M, Blanchard G F, Bacher C, et al. Dynamics of spatial patterns of microphytobenthic biomass: Inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France)[J]. Marine Ecology Progress Series, 1998, 166: 131−141. doi: 10.3354/meps166131
    [42] Andersen T J. Seasonal variation in erodibility of two temperate, microtidal mudflats[J]. Estuarine, Coastal and Shelf Science, 2001, 53(1): 1−12. doi: 10.1006/ecss.2001.0790
    [43] Chen Xindi, Zhang Changkuan, Paterson D M, et al. The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms: the role of 'biofilm precursors'[J]. Earth Surface Processes and Landforms, 2019, 44(7): 1471−1481. doi: 10.1002/esp.4573
    [44] Fan Daidu. Open-coast tidal flats[M]//Davis Jr R A, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 187-229.
    [45] Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
    [46] Zhou Zeng, Liang Mengjiao, Chen Lei, et al. Processes, feedbacks, and morphodynamic evolution of tidal flat–marsh systems: progress and challenges[J]. Water Science and Engineering, 2022, 15(2): 89−102. doi: 10.1016/j.wse.2021.07.002
    [47] Blanchard G F, Guarini J M, Gros P, et al. Seasonal effect on the relationship between the photosynthetic capacity of intertidal microphytobenthos and temperature[J]. Journal of Phycology, 1997, 33(5): 723−728. doi: 10.1111/j.0022-3646.1997.00723.x
    [48] Macintyre H L, Geider R J, Miller D C. Microphytobenthos: the ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production[J]. Estuaries, 1996, 19(2): 186−201. doi: 10.2307/1352224
    [49] Gerbersdorf S U, Wieprecht S. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture[J]. Geobiology, 2015, 13(1): 68−97. doi: 10.1111/gbi.12115
    [50] Widdows J, Blauw A, Heip C H R, et al. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands[J]. Marine Ecology Progress Series, 2004, 274: 41−56. doi: 10.3354/meps274041
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回