留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光照和硝酸盐浓度对东海原甲藻和三角褐指藻释放挥发性卤代烃的影响

倪洁 刘珊珊 陈妍 杨桂朋 何真

倪洁,刘珊珊,陈妍,等. 光照和硝酸盐浓度对东海原甲藻和三角褐指藻释放挥发性卤代烃的影响[J]. 海洋学报,2020,42(12):119–128 doi: 10.3969/j.issn.0253-4193.2020.12.013
引用本文: 倪洁,刘珊珊,陈妍,等. 光照和硝酸盐浓度对东海原甲藻和三角褐指藻释放挥发性卤代烃的影响[J]. 海洋学报,2020,42(12):119–128 doi: 10.3969/j.issn.0253-4193.2020.12.013
Ni Jie,Liu Shanshan,Chen Yan, et al. Influences of nitrate concentration and light intensity on the production of volatile halocarbons by Prorocentrum donghaiense and Phaeodactylum tricornutum[J]. Haiyang Xuebao,2020, 42(12):119–128 doi: 10.3969/j.issn.0253-4193.2020.12.013
Citation: Ni Jie,Liu Shanshan,Chen Yan, et al. Influences of nitrate concentration and light intensity on the production of volatile halocarbons by Prorocentrum donghaiense and Phaeodactylum tricornutum [J]. Haiyang Xuebao,2020, 42(12):119–128 doi: 10.3969/j.issn.0253-4193.2020.12.013

光照和硝酸盐浓度对东海原甲藻和三角褐指藻释放挥发性卤代烃的影响

doi: 10.3969/j.issn.0253-4193.2020.12.013
基金项目: 国家重点研发计划项目(2016YFA0601304);国家自然科学基金(41830534,41506088);中央高校基本科研业务费项目(201762030)。
详细信息
    作者简介:

    倪洁(1995-),女,山东省莒县人,主要从事海洋界面化学方面的研究。E-mail:nijie9512@163.com

    通讯作者:

    何真,副教授,主要研究挥发性卤代烃的生物地球化学循环。E-mail::zhenhe@ouc.edu.cn

  • 中图分类号: P714+.4;P714+.5

Influences of nitrate concentration and light intensity on the production of volatile halocarbons by Prorocentrum donghaiense and Phaeodactylum tricornutum

  • 摘要: 海洋中产生的挥发性卤代烃(Volatile Halocarbons,VHCs)是氯、溴和碘进入大气的重要载体。海洋藻类能够产生损耗大气中臭氧的VHCs,尤其是海洋微藻已被证明是大气中一些VHCs的主要贡献者。环境因素对海洋微藻产生VHCs的影响研究较少,本文主要研究了光照和硝酸盐浓度对微藻释放VHCs的影响。将海洋微藻东海原甲藻(Prorocentrum donghaiense)和三角褐指藻(Phaeodactylum tricornutum)置于密封的玻璃容器中,并在不同光照条件(20 μmol/(m2·s)、70 μmol/(m2·s)和140 μmol/(m2·s))及不同硝酸盐浓度(1 mg/L、5 mg/L、10 mg/L和50 mg/L)下进行无菌单种培养,分析碘甲烷(CH3I)、二溴甲烷(CH2Br2)、一氯二溴甲烷(CHBr2Cl)和三氯乙烯(C2HCl3)4种VHCs的生产。采用吹扫−捕集气相色谱技术对其中的VHCs进行提取和分析。结果表明,光照强度和硝酸盐浓度会影响两种微藻对VHCs的释放,但是对不同VHCs的影响效果不同,其中CH3I的释放受光照强度和硝酸盐浓度变化的影响比较显著。一定范围内,光照强度越大,两种微藻对CH3I的释放量越大。适当的硝酸盐浓度(> 5 mg/L)在一定程度上促进了两种微藻对CH3I的释放。
  • 图  1  实验室微藻培养示意图

    Fig.  1  Schematic diagram of microalgae culture in laboratory

    图  2  不同光照条件下东海原甲藻(a)和三角褐指藻(b)培养液中叶绿素a浓度变化

    Fig.  2  The concentrations of Chl a in the cultures of Prorocentrum donghaiense (a) and Phaeodactylum tricornutum (b) at different light illumination conditions

    图  3  不同光照条件下东海原甲藻(a)和三角褐指藻(b)CH3I释放量

    Fig.  3  The release of CH3I from Prorocentrum donghaiense (a) and Phaeodactylum tricornutum (b) at different light illumination conditions

    图  4  不同光照强度下东海原甲藻(a, b, c)和三角褐指藻(d, e, f)的CH2Br2,CHBr2Cl和C2HCl3释放量

    Fig.  4  The release of CH2Br2, CHBr2Cl and C2HCl3 from Prorocentrum donghaiense (a, b, c) and Phaeodactylum tricornutum (d, e, f) at different light illumination conditions

    图  5  不同硝酸盐浓度下东海原甲藻(a)和三角褐指藻(b)叶绿素a浓度变化

    Fig.  5  The concentrations of Chl a in the cultures of Prorocentrum donghaiense (a) and Phaeodactylum tricornutum (b) at different nitrate concentrations

    图  6  不同硝酸盐浓度下东海原甲藻(a)和三角褐指藻(b)CH3I释放量

    Fig.  6  The release of CH3I from Prorocentrum donghaiense (a) and Phaeodactylum tricornutum (b) at different nitrate concentrations

    图  7  不同硝酸盐浓度下东海原甲藻(a, b, c)和三角褐指藻(d, e, f)的CH2Br2,CHBr2Cl和C2HCl3释放量

    Fig.  7  The release of CH2Br2, CHBr2Cl and C2HCl3 from Prorocentrum donghaiense (a, b, c) and Phaeodactylum tricornutum (d, e, f) at different nitrate concentrations

    表  1  东海原甲藻的VHCs释放量和Chl a浓度的相关性

    Tab.  1  Correlation analysis between the Chl a concentrations and the amounts of VHCs released by Prorocentrum donghaiense

    变量Chl aCH3ICH2Br2CHBr2Cl
    CH3I0.824**
    CH2Br20.3230.422
    CHBr2Cl–0.528–0.289–0.464
    C2HCl3–0.426–0.3610.1590.344
      注:** 表示在0.01水平(双侧)上显著相关, n=36。
    下载: 导出CSV

    表  2  三角褐指藻的VHCs释放量和Chl a浓度的相关性

    Tab.  2  Correlation analysis between the Chl a concentrations and the amounts of VHCs released by Phaeodactylum tricornutum

    变量Chl aCH3ICH2Br2CHBr2Cl
    CH3I0.712**
    CH2Br2–0.216–0.036
    CHBr2Cl–0.1110.078–0.096
    C2HCl3–0.215–0.2450.0290.279
      注:** 表示在0.01水平(双侧)上显著相关, n=36。
    下载: 导出CSV
  • [1] Solomon S, Mills M, Heidt L E, et al. On the evaluation of ozone depletion potentials[J]. Journal of Geophysical Research, 1992, 97(D1): 825−842. doi: 10.1029/91JD02613
    [2] Bing Dan, Zhao Yongfang, Hao Fengyou, et al. Ab initio study on the reaction mechanism of ozone with bromine atom[J]. International Journal of Quantum Chemistry, 2007, 107(5): 1085−1091. doi: 10.1002/qua.21249
    [3] Reifenhäuser W, Heumann K G. Bromo-and bromochloromethanes in the Antarctic atmosphere and the South Polar Sea[J]. Chemosphere, 1992, 24(9): 1293−1300. doi: 10.1016/0045-6535(92)90054-U
    [4] Rosswall T. Greenhouse gases and global change: international collaboration[J]. Environmental Science & Technology, 1991, 25(4): 567−573.
    [5] Liu Yina, Yvon-Lewis S A, Hu Lei, et al. CHBr3, CH2Br2, and CHClBr2 in U.S. coastal waters during the Gulf of Mexico and East Coast Carbon cruise[J]. Journal of Geophysical Research, 2011, 116(C10): C10004. doi: 10.1029/2010JC006729
    [6] Yokouchi Y, Nojiri Y, Toom-Sauntry D, et al. Long-term variation of atmospheric methyl iodide and its link to global environmental change[J]. Geophysical Research Letters, 2012, 39(23): L23805. doi: 10.1029/2012GL053695
    [7] Nightingale P D, Malin G, Liss P S. Production of chloroform and other low molecular-weight halocarbons by some species of macroalgae[J]. Limnology and Oceanography, 1995, 40(4): 680−689. doi: 10.4319/lo.1995.40.4.0680
    [8] Lim Y K, Phang S M, Abdul Rahman N, et al. Halocarbon emissions from marine phytoplankton and climate change[J]. International Journal of Environmental Science and Technology, 2017, 14(6): 1355−1370. doi: 10.1007/s13762-016-1219-5
    [9] Lim Y K, Phang S M, Sturges W T, et al. Emission of short-lived halocarbons by three common tropical marine microalgae during batch culture[J]. Journal of Applied Phycology, 2018, 30(1): 341−353. doi: 10.1007/s10811-017-1250-z
    [10] 杜慧娜, 谢文霞, 崔育倩, 等. 海洋中溴甲烷的研究进展[J]. 应用生态学报, 2014, 25(12): 3694−3700.

    Du Huina, Xie Wenxia, Cui Yuqian, et al. Research advances in methyl bromide in the ocean[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3694−3700.
    [11] 丁琼瑶. 东海、黄海碘甲烷的浓度分布与海−气通量及藻类释放研究[D]. 青岛: 中国海洋大学, 2015.

    Ding Qiongyao. The distributions and sea-to-air fluxes of methyl iodide and production by marine phytoplankton[D]. Qingdao: Ocean University of China, 2015.
    [12] Hughes C, Malin G, Nightingale P D, et al. The effect of light stress on the release of volatile iodocarbons by three species of marine microalgae[J]. Limnology and Oceanography, 2006, 51(6): 2849−2854. doi: 10.4319/lo.2006.51.6.2849
    [13] Abe M, Nagai T, Kurihara M, et al. Effect of temperature on the methyl chloride production rate in a marine phytoplankton, Phaeodactylum tricornutum[J]. Journal of Atmospheric Chemistry, 2017, 74(2): 157−169. doi: 10.1007/s10874-016-9332-x
    [14] Scarratt M G, Moore R M. Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton[J]. Marine Chemistry, 1996, 54(3/4): 263−272.
    [15] Nguvava M, Kuyper B, Bucciarelli E, et al. Nutrient limitation in two marine diatoms inhibits release of bromoform[J]. African Journal of Marine Science, 2016, 38(4): 581−588. doi: 10.2989/1814232X.2016.1263239
    [16] Hughes C, Sun Shuo. Light and brominating activity in two species of marine diatom[J]. Marine Chemistry, 2016, 181: 1−9. doi: 10.1016/j.marchem.2016.02.003
    [17] Scarratt M G, Moore R M. Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum[J]. Limnology and Oceanography, 1999, 44(3): 703−707. doi: 10.4319/lo.1999.44.3.0703
    [18] Smythe-Wright D, Peckett C, Boswell S, et al. Controls on the production of organohalogens by phytoplankton: effect of nitrate concentration and grazing[J]. Journal of Geophysical Research, 2010, 115(G3): G03020. doi: 10.1029/2009JG001036
    [19] Roy R. Short-term variability in halocarbons in relation to phytoplankton pigments in coastal waters of the central eastern Arabian Sea[J]. Estuarine, Coastal and Shelf Science, 2010, 88(3): 311−321. doi: 10.1016/j.ecss.2010.04.011
    [20] Malviya S, Scalco E, Audic S, et al. Insights into global diatom distribution and diversity in the world’s ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): E1516−E1525. doi: 10.1073/pnas.1509523113
    [21] Bowler C, Allen A E, Badger J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219): 239−244. doi: 10.1038/nature07410
    [22] Yuan Dan, Yang Guipeng, He Zhen. Spatio-temporal distributions of chlorofluorocarbons and methyl iodide in the Changjiang (Yangtze River) estuary and its adjacent marine area[J]. Marine Pollution Bulletin, 2016, 103(1/2): 247−259.
    [23] Parsons T R, Maita Y, Lalli C M. A manual of chemical and biological methods for seauater analysis[M]. Oxforol: Pergamon Press, 1984.
    [24] Steele J H. Environmental control of photosynthesis in the Sea[J]. Limnology and Oceanography, 1962, 7(2): 137−150. doi: 10.4319/lo.1962.7.2.0137
    [25] 臧正蓉, 解修俊, 赵佩佩, 等. 温度和光照对三角褐指藻的生长及岩藻黄素含量的影响[J]. 海洋科学, 2015, 39(7): 1−6. doi: 10.11759/hykx20140403002

    Zang Zhengrong, Xie Xiujun, Zhao Peipei, et al. Effect of different temperatures and light conditions on the growth and fucoxanthin content of Phaeodactylum tricornutum[J]. Marine Sciences, 2015, 39(7): 1−6. doi: 10.11759/hykx20140403002
    [26] 左照江. 藻类挥发性有机化合物研究进展[J]. 水生生物学报, 2017, 41(6): 1369−1379. doi: 10.7541/2017.169

    Zuo Zhaojiang. The review of research advances in algal volatile organic compounds[J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1369−1379. doi: 10.7541/2017.169
    [27] Moore R M, Zafiriou O C. Photochemical production of methyl iodide in seawater[J]. Journal of Geophysical Research, 1994, 99(D8): 16415−16420. doi: 10.1029/94jd00786
    [28] Class T, Kohnle R, Ballschmiter K. Chemistry of organic traces in air VII: bromo- and bromochloromethanes in air over the Atlantic Ocean[J]. Chemosphere, 1986, 15(4): 429−436. doi: 10.1016/0045-6535(86)90536-9
    [29] Xu Nianjun, Zhang Xuecheng, Fan Xiao, et al. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta)[J]. Journal of Applied Phycology, 2001, 13(6): 463−469. doi: 10.1023/A:1012537219198
    [30] 王金花, 唐洪杰, 王修林, 等. 氮、磷营养盐对东海原甲藻生长和硝酸还原酶活性的影响[J]. 应用与环境生物学报, 2008, 14(5): 620−623. doi: 10.3321/j.issn:1006-687X.2008.05.006

    Wang Jinhua, Tang Hongjie, Wang Xiulin, et al. Effects of nitrate and phosphate on growth and nitrate reductase activity of Prorocentrum donghaiense[J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(5): 620−623. doi: 10.3321/j.issn:1006-687X.2008.05.006
    [31] Chen Yu, Qiu Yujing, Zhang Wei, et al. Effect of nutrient elements on growth and lipid accumulation of Phaeodactylum tricornutum[J]. Biomass Chemical Engineering, 2011, 45(5): 1−6.
    [32] Roy R, Pratihary A, Narvenkar G, et al. The relationship between volatile halocarbons and phytoplankton pigments during a Trichodesmium bloom in the coastal eastern Arabian Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 110−118. doi: 10.1016/j.ecss.2011.08.025
    [33] Moore R M, Webb M, Tokarczyk R, et al. Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures[J]. Journal of Geophysical Research, 1996, 101(C9): 20899−20908. doi: 10.1029/96JC01248
    [34] Brigante M, Minella M, Mailhot G, et al. Formation and reactivity of the dichloride radical $ {( {{\rm{Cl}}_2^ -} )}$ in surface waters: a modelling approach[J]. Chemosphere, 2014, 95: 464−469. doi: 10.1016/j.chemosphere.2013.09.098
    [35] Martino M, Mills G P, Woeltjen J, et al. A new source of volatile organoiodine compounds in surface seawater[J]. Geophysical Research Letters, 2009, 36(1): L01609.
    [36] Grebel J E, Pignatello J J, Mitch W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology, 2010, 44(17): 6822−6828.
    [37] Moore R M. A photochemical source of methyl chloride in saline waters[J]. Environmental Science & Technology, 2008, 42(6): 1933−1937.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  17
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2020-02-06
  • 网络出版日期:  2020-12-24
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回