留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶州湾海水痕量金属−溶解有机质分配特征及其影响因素探讨

泮枫敏 袁华茂 宋金明 李学刚 李宁 段丽琴 邢建伟

泮枫敏,袁华茂,宋金明,等. 胶州湾海水痕量金属−溶解有机质分配特征及其影响因素探讨[J]. 海洋学报,2020,42(12):1–13 doi: 10.3969/j.issn.0253-4193.2020.12.001
引用本文: 泮枫敏,袁华茂,宋金明,等. 胶州湾海水痕量金属−溶解有机质分配特征及其影响因素探讨[J]. 海洋学报,2020,42(12):1–13 doi: 10.3969/j.issn.0253-4193.2020.12.001
Pan Fengmin,Yuan Huamao,Song Jinming, et al. Size distribution characteristics and influence factors of trace metals in seawater of the Jiaozhou Bay[J]. Haiyang Xuebao,2020, 42(12):1–13 doi: 10.3969/j.issn.0253-4193.2020.12.001
Citation: Pan Fengmin,Yuan Huamao,Song Jinming, et al. Size distribution characteristics and influence factors of trace metals in seawater of the Jiaozhou Bay[J]. Haiyang Xuebao,2020, 42(12):1–13 doi: 10.3969/j.issn.0253-4193.2020.12.001

胶州湾海水痕量金属−溶解有机质分配特征及其影响因素探讨

doi: 10.3969/j.issn.0253-4193.2020.12.001
基金项目: 山东省重大科技创新工程专项(2018SDKJ0504-1);青岛海洋科学与技术试点国家实验室鳌山科技创新计划项目(2016ASKJ02-4);中国科学院战略先导性专项(XDA 23050501)。
详细信息
    作者简介:

    泮枫敏(1995-),女,山东省诸城市人,研究方向为海洋生物地球化学。E-mail:15092139387@163.com

    通讯作者:

    袁华茂,男,研究员,主要从事海洋生物地球化学研究。E-mail:yuanhuamao@qdio.ac.cn

    宋金明,男,研究员,主要从事海洋生物地球化学研究。E-mail:jmsong@qdio.ac.cn

  • 中图分类号: S931

Size distribution characteristics and influence factors of trace metals in seawater of the Jiaozhou Bay

  • 摘要: 采集胶州湾表层和底层海水样品,分析了Cu、Cr、Cd、Pb、Ni、Co等痕量金属在海水中的空间分布特征及其在不同分子量溶解有机质中的分配特征,并探讨了痕量金属−溶解有机质分配机理及浮游生物活动与盐度等环境因素对该分配过程的影响。结果表明,胶州湾海水中痕量金属呈近岸浓度较高的分布特征,在湾东北部出现高值区,Cd和Pb还分别在湾口与湾中部出现高值区。胶州湾海水中痕量金属平均有70.1%分配于低分子量(<1 kDa)组分中,其中Cu和Cd低分子量组分所占平均比例分别达79.0%与77.6%,Cr、Ni和Co稍低,分别为71.5%、67.3%及66.9%,Pb则仅为58.2%。海水中的溶解有机碳也以低分子量组分为主,所占比例平均达73.1%,且光谱特征显示低分子量溶解有机质中类腐殖质含量更高,含有丰富的羧基和羟基,金属配合能力较高,导致痕量金属多分配于低分子量溶解有机质中。高分子量溶解有机质(>1 kDa)所占比例与叶绿素a浓度呈显著正相关,表明浮游植物初级生产通过释放高分子量溶解有机质影响海水痕量金属−溶解有机质的分配过程。胶州湾湾顶盐度较低海域痕量金属高分子量组分略高,可能是生物活动及陆源输入(产生更多高分子量溶解有机质)与盐度(低盐有利于高分子量有机质的稳定性)共同作用的结果。
  • 图  1  胶州湾采样站位

    Fig.  1  Locations of the sampling stations in the Jiaozhou Bay

    图  2  胶州湾海水中痕量金属在不同分子量溶解有机质中的分配(S:表层海水;B:底层海水)

    Fig.  2  Distribution of trace metals among different sized DOM in seawater of the Jiaozhou Bay (S:surface seawater;B:bottom seawater)

    图  3  胶州湾海水中溶解有机碳的分子量分布

    Fig.  3  Size distribution of dissolved organic carbon in seawater of the Jiaozhou Bay

    图  4  胶州湾海水中溶解有机质的紫外吸收特征参数及荧光强度

    紫外吸收特征参数:a. S275-295,b. E2:E3;荧光强度:c. 类蛋白质,d. 类腐殖质

    Fig.  4  UV-Vis absorption characteristics and fluorescence intensities of dissolved organic matters in seawater of the Jiaozhou Bay

    UV-Vis absorption characteristics: a. S275-295, b. E2:E3; fluorescence intensities: c. protein-like DOM;d. humic-like DOM

    图  5  胶州湾海水中叶绿素a浓度与高分子量溶解有机质(>1 kDa)所占比例的相关性

    Fig.  5  Correlations between chlorophyll a concentration and high molecular weight proportion (>1 kDa) in seawater of the Jiaozhou Bay

    表  1  胶州湾海水中痕量金属浓度

    Tab.  1  Concentrations of trace metals in seawater of the Jiaozhou Bay

    站位采样深度/m痕量金属浓度/µg·L−1
    CuCdCrPbCoNi
    S1(S)24.810.351.42.642.011.53
    S1(B)77.540.851.02.002.495.47
    S2(S)22.260.220.81.971.060.31
    S3(S)22.680.161.01.601.340.86
    S4(S)21.590.040.92.250.750.73
    S4(B)144.040.100.91.420.792.37
    S5(S)23.120.400.70.841.570.46
    S5(B)45.050.920.80.591.801.96
    S6(S)22.930.041.01.311.490.75
    S6(B)125.250.071.00.621.773.01
      注:括号中S代表表层样品,B代表底层样品。
    下载: 导出CSV

    表  2  胶州湾及其他海域海水中痕量金属浓度

    Tab.  2  Concentrations of trace metals in seawater of the Jiaozhou Bay and other areas

    研究海域痕量金属浓度/µg·L−1参考文献
    CuCdCrPbCoNi
    胶州湾a3.920.321.01.521.511.74本研究
    胶州湾a3.280.110.560.83NA0.68[18-20]
    大亚湾a3..200.042.342.40NANA[21]
    钦州湾a3.720.2281.013.60NANA[22]
    渤海a1.450.11NA0.0180.020.91[23]
    胶州湾b2.880.021.01.771.370.77本研究
    旧金山湾b0.960.004NA0.030.111.12[24-25]
    北黄海b1.400.24NA0.40NANA[26]
    西太平洋b0.070.005NANA0.0010.20[27]
      注:a表示海区均值,b表示表层海水均值,NA表示未检测到该金属元素。
    下载: 导出CSV

    表  3  胶州湾海水叶绿素a浓度与盐度

    Tab.  3  Chlorophyll a concentration and salinity in seawater of the Jiaozhou Bay

    S1(S)S1(B)S2(S)S3(S)S4(S)S4(B)S5(S)S5(B)S6(S)S6(B)
    叶绿素a浓度/µg·L−17.8417.9094.9076.3292.6091.1312.2552.3672.2771.331
    盐度30.030.230.429.730.630.830.830.931.732.1
    下载: 导出CSV
  • [1] Xu Huacheng, Guo Laodong. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters[J]. Water Research, 2017, 117: 115−126. doi: 10.1016/j.watres.2017.04.006
    [2] Ogawa H, Tanoue E. Dissolved organic matter in oceanic waters[J]. Journal of Oceanography, 2003, 59(2): 129−147. doi: 10.1023/A:1025528919771
    [3] Pokrovsky O S, Shirokova L S, Viers J, et al. Fate of colloids during estuarine mixing in the Arctic[J]. Ocean Science, 2014, 10(1): 107−125. doi: 10.5194/os-10-107-2014
    [4] Phinney J T, Bruland K W. Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira weissflogii[J]. Environmental Science and Technology, 1994, 28(11): 1781−1790. doi: 10.1021/es00060a006
    [5] Sato M, Takeda S, Furuya K, et al. Iron regeneration and organic iron (III)-binding ligand production during in situ zooplankton grazing experiment[J]. Marine Chemistry, 2007, 106(3/4): 471−488.
    [6] 宋金明, 王启栋, 张润, 等. 70年来中国化学海洋学研究的主要进展[J]. 海洋学报, 2019, 41(10): 65−80.

    Song Jinming, Wang Qidong, Zhang Run, et al. Main progress on chemical oceanography in China over the past 70 years[J]. Haiyang Xuebao, 2019, 41(10): 65−80.
    [7] García J L L, de Castro M D L. Acceleration and Automation of Solid Sample Treatment[M]. Amsterdam: Elsevier, 2002.
    [8] Ashley K, Andrews R N, Cavazos L, et al. Ultrasonic extraction as a sample preparation technique for elemental analysis by atomic spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(10): 1147−1153. doi: 10.1039/b102027g
    [9] Achterberg E P, Braungardt C B, Sandford R C, et al. UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection[J]. Analytica Chimica Acta, 2001, 440(1): 27−36. doi: 10.1016/S0003-2670(01)00824-8
    [10] Golimowski J, Golimowska K. UV-photooxidation as pretreatment step in inorganic analysis of environmental samples[J]. Analytica Chimica Acta, 1996, 325(3): 111−133. doi: 10.1016/0003-2670(96)00034-7
    [11] Biller D V, Bruland K W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS)[J]. Marine Chemistry, 2012, 130−131: 12−20. doi: 10.1016/j.marchem.2011.12.001
    [12] 宋金明, 段丽琴, 袁华茂. 胶州湾的化学环境演变[M]. 北京: 科学出版社, 2016.

    Song Jinming, Duan Liqin, Yuan Huamao. Chemical Environment Evolution of Jiaozhou Bay[M]. Beijing: Science Press, 2016.
    [13] 李婷婷. 黄海胶州湾多介质重金属空间分布及风险评价[D]. 成都: 西南大学, 2009.

    Li Tingting. Distribution and pollution of heavy metals in multimedia of Jiaozhou Bay in Yellow Sea[D]. Chengdu: Southwest University, 2009.
    [14] 宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40(10): 1−13.

    Song Jinming, Li Xuegang. Ecological functions and biogenic element cycling roles of marine sediment/particles[J]. Haiyang Xuebao, 2018, 40(10): 1−13.
    [15] Cantwell M G, Burgess R M, Kester D R. Release and phase partitioning of metals from anoxic estuarine sediments during periods of simulated resuspension[J]. Environmental Science and Technology, 2002, 36(24): 5328−5334. doi: 10.1021/es0115058
    [16] 黄财宾, 李云海, 陈坚, 等. 泉州湾悬浮颗粒物中重金属的分布特征及其影响因素[J]. 环境科学, 2010, 31(5): 1167−1175.

    Huang Caibin, Li Yunhai, Chen Jian, et al. Distribution patterns of heavy metals in suspended particles of the Quanzhou Bay and their influence factors[J]. Environmental Science, 2010, 31(5): 1167−1175.
    [17] 石荣贵, 龙爱民, 周伟华, 等. 珠江口磨刀门咸潮及其对环境要素变化的影响[J]. 海洋科学, 2012, 36(8): 88−95.

    Shi Ronggui, Long Aimin, Zhou Weihua, et al. Salt-wedge intrusion and its influence on environmental factors in the Modaomen Channel, Pearl River estuary[J]. Marine Sciences, 2012, 36(8): 88−95.
    [18] 李玉. 胶州湾主要重金属和有机污染物的分布及特征研究[D]. 青岛: 中国科学院海洋研究所, 2005.

    Li Yu. Study on the distribution and characteristics of main heavy metals and organic pollutants of Jiaozhou Bay[D]. Qingdao: Chinese Academy of Sciences, Institute of Oceanography, 2005.
    [19] 王晓萌. 排海浓盐水对胶州湾典型浮游植物影响及环境容量研究[D]. 青岛: 中国海洋大学, 2009.

    Wang Xiaomeng. Study on the effect of brine on typical phytoplanktons in Jiaozhou Bay and the environmental capacity[D]. Qingdao: Ocean University of China, 2009.
    [20] 杨东方, 陈豫, 王虹, 等. 胶州湾水体镉的迁移过程和环境本底值结构[J]. 海岸工程, 2010, 29(4): 73−82. doi: 10.3969/j.issn.1002-3682.2010.04.010

    Yang Dongfang, Chen Yu, Wang Hong, et al. Environmental background composition and transfer process of cadmium in Jiaozhou Bay[J]. Coastal Engineering, 2010, 29(4): 73−82. doi: 10.3969/j.issn.1002-3682.2010.04.010
    [21] 丘耀文, 颜文, 王肇鼎, 等. 大亚湾海水、沉积物和生物体中重金属分布及其生态危害[J]. 热带海洋学报, 2005, 24(5): 69−76. doi: 10.3969/j.issn.1009-5470.2005.05.008

    Qiu Yaowen, Yan Wen, Wang Zhaoding, et al. Distributions of heavy metals in seawater, sediments and organisms at Daya Bay and their ecological harm[J]. Journal of Tropical Oceanography, 2005, 24(5): 69−76. doi: 10.3969/j.issn.1009-5470.2005.05.008
    [22] 黄向青, 林进清, 张顺枝, 等. 广西钦州湾−北海水域海水重金属分布与评价[J]. 海洋环境科学, 2013, 32(5): 729−735, 762.

    Huang Xiangqing, Lin Jinqing, Zhang Shunzhi, et al. Seawater heavy metal distribution and quality assessment in Qinzhou Bay—Beihai waters of Guangxi coast[J]. Marine Environmental Science, 2013, 32(5): 729−735, 762.
    [23] Flegal A R, Smith G J, Gill G A, et al. Dissolved trace element cycles in the San Francisco Bay estuary[J]. Marine Chemistry, 1991, 36(1/4): 329−363.
    [24] Squire S, Scelfo G M, Revenaugh J, et al. Decadal trends of silver and lead contamination in San Francisco Bay surface waters[J]. Environmental Science and Technology, 2002, 36(11): 2379−2386. doi: 10.1021/es015746r
    [25] Li Li, Liu Jihua, Wang Xiaojing, et al. Dissolved trace metal distributions and Cu speciation in the southern Bohai Sea, China[J]. Marine Chemistry, 2015, 172: 34−45. doi: 10.1016/j.marchem.2015.03.002
    [26] 田琳, 陈洪涛, 杜俊涛, 等. 北黄海表层海水溶解态重金属的分布特征及其影响因素[J]. 中国海洋大学学报(自然科学版), 2009, 39(4): 617−621.

    Tian Lin, Chen Hongtao, Du Juntao, et al. Factors influencing distribution of soluble heavy metals in North Yellow Sea surface seawaters[J]. Periodical of Ocean University of China, 2009, 39(4): 617−621.
    [27] 黄西能, 韩舞鹰, 容荣贵, 等. 西太平洋赤道海区海洋表面微层化学的初步观测[J]. 热带海洋, 1990, 9(4): 93−97.

    Huang Xineng, Han Wuying, Rong Ronggui, et al. A preliminary observation on the chemistry in the sea surface microlayer at equatorial west Pacific[J]. Journal of Tropical Oceanography, 1990, 9(4): 93−97.
    [28] Vraspir J M, Butler A. Chemistry of marine ligands and siderophores[J]. Annual Review of Marine Science, 2009, 1: 43−63. doi: 10.1146/annurev.marine.010908.163712
    [29] Scarponi G, Capodaglio G, Toscano G, et al. Speciation of lead and cadmium in Antarctic seawater: Comparison with areas subject to different anthropic influence[J]. Microchemical Journal, 1995, 51(1/2): 214−230.
    [30] Saito M A, Moffett J W. Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work[J]. Marine Chemistry, 2001, 75(1/2): 49−68.
    [31] Baars O, Abouchami W, Galer S J G, et al. Dissolved cadmium in the Southern Ocean: Distribution, speciation, and relation to phosphate[J]. Limnology and Oceanography, 2014, 59(2): 385−399. doi: 10.4319/lo.2014.59.2.0385
    [32] Bruland K W. Complexation of cadmium by natural organic ligands in the central North Pacific[J]. Limnology and Oceanography, 1992, 37(5): 1008−1017. doi: 10.4319/lo.1992.37.5.1008
    [33] Ellwood M J. Zinc and cadmium speciation in subantarctic waters east of New Zealand[J]. Marine Chemistry, 2004, 87(1/2): 37−58.
    [34] Saito M A, Moffett J W, Ditullio G R. Cobalt and nickel in the Peru upwelling region: A major flux of labile cobalt utilized as a micronutrient[J]. Global Biogeochemical Cycles, 2004, 18(4): GB4030.
    [35] Gustafsson J P, Persson I, Oromieh A G, et al. Chromium (III) complexation to natural organic matter: Mechanisms and modeling[J]. Environmental Science and Technology, 2014, 48(3): 1753−1761. doi: 10.1021/es404557e
    [36] Wen L S, Santschi P H, Warnken K W, et al. Molecular weight and chemical reactivity of dissolved trace metals (Cd, Cu, Ni) in surface waters from the Mississippi River to Gulf of Mexico[J]. Estuarine, Coastal and Shelf Science, 2011, 92(4): 649−658. doi: 10.1016/j.ecss.2011.03.009
    [37] 泮枫敏, 袁华茂, 宋金明, 等. 海水痕量元素−有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499−512. doi: 10.11867/j.issn.1001-8166.2019.05.0499

    Pan Fengmin, Yuan Huamao, Song Jinming, et al. The distribution of trace elements−organic ligands in seawater and factors influencing their complexation[J]. Advances in Earth Science, 2019, 34(5): 499−512. doi: 10.11867/j.issn.1001-8166.2019.05.0499
    [38] Wang Wenhao, Wang Wenxiong. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge[J]. Environmental Pollution, 2016, 214: 35−44. doi: 10.1016/j.envpol.2016.03.059
    [39] Sadi B B M, Wrobel K, Wrobel K, et al. SEC-ICP-MS studies for elements binding to different molecular weight fractions of humic substances in compost extract obtained from urban solid waste[J]. Journal of Environmental Monitoring, 2002, 4(6): 1010−1016. doi: 10.1039/b206985g
    [40] Lu Yuxi, Gao Xuelu, Chen C T A. Separation and determination of colloidal trace metals in seawater by cross-flow ultrafiltration, liquid-liquid extraction and ICP-MS[J]. Marine Chemistry, 2019, 215: 103685. doi: 10.1016/j.marchem.2019.103685
    [41] Ogawa H. Bulk chemical aspects of dissolved organic matter in seawater review: The recent findings and unsolved problems[M]//Handa N, Tanoue E, Hama T. Dynamics and Characterization of Marine Organic Matter. Dordrecht: Springer, 2000: 311−337.
    [42] 李晓殷, 程方. 天津临港海域海水中溶解性有机物相对分子质量分布特性[J]. 天津化工, 2014, 28(1): 1−4.

    Li Xiaoyin, Cheng Fang. The characteristics of dissolved organic matters molecular weight distribution in Tianjin Lingang seawater[J]. Tianjin Chemical Industry, 2014, 28(1): 1−4.
    [43] Harvey H R, Mannino A. The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers[J]. Organic Geochemistry, 2001, 32(4): 527−542. doi: 10.1016/S0146-6380(00)00193-5
    [44] Stolpe B, Guo Laodong, Shiller A M, et al. Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation[J]. Marine Chemistry, 2010, 118(3/4): 119−128.
    [45] Rodríguez F J, Núñez L A. Characterization of aquatic humic substances[J]. Water and Environment Journal, 2011, 25(2): 163−170. doi: 10.1111/j.1747-6593.2009.00205.x
    [46] Han Nizhou, Thompson M L. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids[J]. Journal of Environmental Quality, 1999, 28(3): 939−944.
    [47] Mahara Y, Kubota T, Wakayama R, et al. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics[J]. Science of the Total Environment, 2007, 387(1/3): 220−227.
    [48] 周倩倩. 黄渤海夏秋季有色溶解有机物(CDOM)的分布特征及季节变化的研究[D]. 青岛: 中国海洋大学, 2015.

    Zhou Qianqian. The study on distribution and seasonal changes of chromophoric dissolved organic matter in summer and autumn in the Bohai Sea and the Yellow Sea[D]. Qingdao: Ocean University of China, 2015.
    [49] Carder K L, Steward R G, Harvey G R, et al. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll[J]. Limnology and Oceanography, 1989, 34(1): 68−81. doi: 10.4319/lo.1989.34.1.0068
    [50] 蒋疆, 王果, 陈芳育, 等. 草炭溶解态有机物质与Cu2+、Cd2+络合稳定性的研究[J]. 土壤与环境, 2002, 11(2): 116−120.

    Jiang Jiang, Wang Guo, Chen Fangyu, et al. Chelation relationship between Cu2+, Cd2+ and dissolved organic matter of peat[J]. Soil and Environmental Sciences, 2002, 11(2): 116−120.
    [51] Wang Wenhao, Chen Min, Guo Laodong, et al. Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary[J]. Science of the Total Environment, 2017, 603−604: 434−444. doi: 10.1016/j.scitotenv.2017.06.121
    [52] Krivacsy Z, Kiss G, Ceburnis D, et al. Study of water-soluble atmospheric humic matter in urban and marine environments[J]. Atmospheric Research, 2008, 87(1): 1−12. doi: 10.1016/j.atmosres.2007.04.005
    [53] 聂明华, 晏彩霞, 杨毅, 等. 黄浦江流域典型污水中不同粒径胶体的三维荧光光谱特征[J]. 环境科学, 2017, 38(8): 3192−3199.

    Nie Minghua, Yan Caixia, Yang Yi, et al. Fluorescence characterization of fractionated colloids in wastewaters received by Huangpu River[J]. Environmental Science, 2017, 38(8): 3192−3199.
    [54] Linnik P N. Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies[J]. Analytical and Bioanalytical Chemistry, 2003, 376(3): 405−412. doi: 10.1007/s00216-003-1882-5
    [55] Mangal V, Stock N L, Guéguen C, et al. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 408(7): 1891−1900. doi: 10.1007/s00216-015-9295-9
    [56] 周卜, 袁华茂, 宋金明, 等. 胶州湾沉积物中氨基酸对有机质降解及细菌源贡献的指示作用解析[J]. 海洋学报, 2018, 40(8): 29−41.

    Zhou Bu, Yuan Huamao, Song Jinming, et al. Indications of amino acids for the degradation of organic matter and bacterial sources in sediments of the Jiaozhou Bay[J]. Haiyang Xuebao, 2018, 40(8): 29−41.
    [57] Hama T, Yanagi K, Hama J. Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis[J]. Limnology and Oceanography, 2004, 49(2): 471−481. doi: 10.4319/lo.2004.49.2.0471
    [58] Benner R, Amon R M W. The size-reactivity continuum of major bioelements in the ocean[J]. Annual Review of Marine Science, 2015, 7: 185−205. doi: 10.1146/annurev-marine-010213-135126
    [59] Xu Huacheng, Houghton E M, Houghton C J, et al. Variations in size and composition of colloidal organic matter in a negative freshwater estuary[J]. Science of the Total Environment, 2018, 615: 931−941. doi: 10.1016/j.scitotenv.2017.10.019
    [60] Kaiser K, Benner R. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations[J]. Marine Chemistry, 2009, 113(1/2): 63−77.
    [61] Bianchi T S. Biogeochemistry of Estuaries[M]. New York: Oxford University Press, 2007.
    [62] Yang Rujun, Su Han, Qu Shenglu, et al. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea[J]. Scientific Reports, 2017, 7: 1381. doi: 10.1038/s41598-017-01533-6
    [63] Fang Kai, Yuan Dongxing, Zhang Lei, et al. Effect of environmental factors on the complexation of iron and humic acid[J]. Journal of Environmental Sciences, 2015, 27: 188−196. doi: 10.1016/j.jes.2014.06.039
    [64] Zhang Yuan, Zhang Yan, Yu Tao. Quantitative characterization of Cu binding potential of dissolved organic matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Frontiers of Environmental Science & Engineering, 2014, 8(5): 666−674.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  117
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-05
  • 修回日期:  2020-05-02
  • 网络出版日期:  2020-12-24
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回