留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

霍尔锚在粉细砂中抛锚深度模型试验

王慧 张可成 王忠涛 张宇 王洪波

王慧,张可成,王忠涛,等. 霍尔锚在粉细砂中抛锚深度模型试验[J]. 海洋学报,2020,42(11):123–130 doi: 10.3969/j.issn.0253-4193.2020.11.012
引用本文: 王慧,张可成,王忠涛,等. 霍尔锚在粉细砂中抛锚深度模型试验[J]. 海洋学报,2020,42(11):123–130 doi: 10.3969/j.issn.0253-4193.2020.11.012
Wang Hui,Zhang Kecheng,Wang Zhongtao, et al. Model tests on penetration depth of hall anchor in silty sand[J]. Haiyang Xuebao,2020, 42(11):123–130 doi: 10.3969/j.issn.0253-4193.2020.11.012
Citation: Wang Hui,Zhang Kecheng,Wang Zhongtao, et al. Model tests on penetration depth of hall anchor in silty sand[J]. Haiyang Xuebao,2020, 42(11):123–130 doi: 10.3969/j.issn.0253-4193.2020.11.012

霍尔锚在粉细砂中抛锚深度模型试验

doi: 10.3969/j.issn.0253-4193.2020.11.012
基金项目: 国家重点研发计划(2016YFE0200100);国家自然科学基金(41772296,51639002)。
详细信息
    作者简介:

    王慧(1995-),女,山东省烟台市人,主要从事海洋岩土工程研究。E-mail:wh17854227751@mail.dlut.edu.cn

    通讯作者:

    张可成(1986-),男,江苏省徐州市人,主要从事船舶设计。E-mail:zhkc2789@163.com

  • 中图分类号: P751

Model tests on penetration depth of hall anchor in silty sand

  • 摘要: 航船应急抛锚时锚板贯入土体可能会影响河床或海床中的结构物甚者造成破坏,因此在通航频繁的航道,结构物埋深的设计需要充分考虑应急抛锚时锚板的贯入深度。本文通过缩尺模型试验模拟了霍尔锚在中等密实度粉细砂中的抛锚贯入过程,研究了不同抛锚速度(1.15~4.4 m/s)及粉细砂相对密实度(0.45~0.65)对抛锚贯入深度的影响;基于太沙基极限承载力理论和能量守恒定律,推导出霍尔锚在粉细砂土中贯入深度的表达式,与模型试验结果对比显示理论计算结果偏于保守。基于试验结果提出修正系数,修正后的理论公式能够较好地快速预测霍尔锚在中等密实度粉细砂中的贯入深度。研究结果为粉细砂土河床或海床中的结构物埋深设计提供了一定的技术参考。
  • 图  1  霍尔锚在土中的受力

    Fig.  1  Forces on the Hall anchor in the soil

    图  2  霍尔锚模型实物照片(单位:mm)

    Fig.  2  Photo of the Hall anchor model (unit: mm)

    图  3  试验所用模型箱及底部进水排水孔

    Fig.  3  Model box and water inlet draining valve at bottom

    图  4  铺设排水层、土工布和滤纸示意图

    Fig.  4  Schematic diagram of laying the draining layer, geotextile and filter paper

    图  5  MEMS加速度传感器及其在锚上的位置

    Fig.  5  MEMS accelerometer and its position on the anchor

    图  6  试验装置示意图和实物照片

    Fig.  6  Diagram and photo of test setup

    图  7  锚入土前的下落速度随距离土面高度变化曲线(工况H13,v0=2.78 m/s)

    Fig.  7  Curves of anchor’s velocity vs. position before penetrating into sand (case H13, v0=2.78 m/s)

    图  8  高速相机采集的霍尔锚抛锚下落过程照片(工况H4,v0=2.13 m/s)

    Fig.  8  Photos of the Hall anchor anchoring process captured by a high-speed camera (case H4, v0=2.13 m/s)

    图  9  抛锚试验结果(工况H4,v0=2.13 m/s)

    Fig.  9  Dynamic penetration test results (case H4, v0=2.13 m/s)

    图  10  霍尔锚底部贯入面积随贯入深度变化

    Fig.  10  The variety of the bottom penetration area with penetration depth

    图  11  采用不同的承载力系数计算得到的贯入深度曲线

    Fig.  11  Curves of penetration depth vs. Ek calculated with different bearing capacity coefficients

    图  12  贯入深度随能量变化的曲线以及试验数据点

    a. 采用Terzaghi等[19]方法,b. 采用Hansen[17]方法

    Fig.  12  Curves of penetration depth v.s. energy and tests data

    The methods of Terzaghi et al.[19] and Hansen[17]are adopted in a and b, respectivily

    表  1  砂土中船锚动力贯入模型试验相似关系

    Tab.  1  Similarity relationships of dynamic penetration model tests in sand

    物理量长度L面积A速度v抛锚深度z重力W阻力Fs内摩擦角φ动能Ek势能Ep
    比尺λLλAλvλzλWλFλφλEλp
    相似关系λL$ {\lambda_L^2}$$ {\lambda_L^{1/2}}$λL$ {\lambda_L^3}$$ {\lambda_L^3}$1$ {\lambda_L^4}$$ {\lambda_L^4}$
    模型试验1/λL1/$ {\lambda_L^2}$1/$ {\lambda_L^{1/2}}$1/λL1/$ {\lambda_L^3}$1/$ {\lambda_L^3}$11/$ {\lambda_L^4}$1/$ {\lambda_L^4}$
    下载: 导出CSV

    表  2  霍尔锚模型尺寸

    Tab.  2  Hall anchor model size

    锚重/kgH/mmh/mmh1/mmL/mmL1/mmB/mmB1/mm
    模型1.74193.27104.623148.93104.657.9368.73
    原型561028991569345223415698691031
      注:表中各符号代表的含义标注在图2中。
    下载: 导出CSV

    表  3  模型试验土样颗粒筛分结果

    Tab.  3  Partical screening test result of soil sample

    颗粒直径/mm0.25~0.50.075~0.25<0.075
    试验土颗粒组成百分数17.5%50%32.5%
    现场土颗粒组成百分数8.3%58.4%33.2%
    下载: 导出CSV

    表  4  不同相对密实度下土体干密度与内摩擦角

    Tab.  4  Dry density and internal friction angle of soil sample under different relative density

    相对密实度0.450.550.65
    干密度/g·cm−31.4571.5151.577
    内摩擦角/(°)36.938.939.5
    下载: 导出CSV

    表  5  抛锚试验工况及结果

    Tab.  5  Tests conditions and results

    工况抛锚高度/mDr抛锚速度/m·s−1贯入深度/m
    模型原型模型原型
    H10.090.451.154.450.0550.825
    H20.150.451.646.350.0831.245
    H30.210.452.017.780.1081.620
    H40.250.452.138.250.1101.650
    H50.350.452.569.910.1402.100
    H60.700.453.6614.180.1873.405
    H70.840.454.0215.570.1963.890
    H80.150.551.666.420.0500.750
    H90.220.552.037.860.0590.891
    H100.250.552.128.220.0650.975
    H110.300.552.429.390.0731.089
    H120.400.552.7610.710.0771.155
    H130.410.552.7810.780.0821.230
    H140.520.553.1912.360.0901.350
    H150.620.553.4913.500.0921.386
    H160.800.553.9615.340.1211.815
    H171.000.554.4017.060.1321.980
    H180.150.651.606.200.0380.567
    H190.280.652.318.950.0400.600
    H200.420.652.8611.080.0450.675
    H210.590.653.3512.970.0751.125
    H220.700.653.6614.180.0711.071
    H230.820.654.0015.490.0901.354
    下载: 导出CSV

    表  6  各学者建议的承载力系数计算公式

    Tab.  6  Formulas for calculating the bearing capacity coefficient recommended by various scholars

    参考文献NcNq
    文献[19]${\left( { {N_{{q} } } - 1} \right)\cot \varphi }$${\dfrac{ { {\rm{e}^{\left( {\dfrac{ {3{\text π} } }{2} - \varphi } \right)\tan \varphi } } } }{ {2{ {\cos }^2}\left( {\dfrac{ {\text π} }{4} + \dfrac{\varphi }{2} } \right)} } }$${1.8\left( { {N_{{q} } } - 1} \right)\tan \varphi }$
    文献[18]${\left( { {N_{{q} } } - 1} \right)\cot \varphi }$${ {\rm{e}^{ {\text π} \tan \varphi } }{ {\tan }^2}\left( {\dfrac{ {\text π} }{4} + \dfrac{\varphi }{2} } \right)}$${\left( { {N_{{q} } } - 1} \right)\tan (1.4\varphi )}$
    文献[20]${\left( { {N_{{q} } } - 1} \right)\cot \varphi }$${ {\rm{e}^{ {\text π} \tan \varphi } }{ {\tan }^2}\left( {\dfrac{ {\text π} }{4} + \dfrac{\varphi }{2} } \right)}$${2\left( { {N_{{q} } } - 1} \right)\tan \varphi }$
    文献[17]${\left( { {N_{{q} } } - 1} \right)\cot \varphi }$${ {\rm{e}^{ {\text π} \tan \varphi } }{ {\tan }^2}\left( {\dfrac{ {\text π} }{4} + \dfrac{\varphi }{2} } \right)}$${1.8\left( { {N_{{q} } } - 1} \right)\tan \varphi }$
    下载: 导出CSV
  • [1] 贾琇明, 岳来群, 韦子亮. 有关我国深海油气资源勘探开发的几点思考[J]. 国土资源情报, 2005(7): 5−7.

    Jia Xiuming, Yue Laiqun, Wei Ziliang. Some thoughts on exploration and development of oil and gas resources of China in deep sea[J]. Land and Resources Information, 2005(7): 5−7.
    [2] 王巍巍. 船舶应急抛锚贯入深度分析[J]. 船舶物资与市场, 2019(1): 37−38.

    Wang Weiwei. Analysis of emergency anchoring penetration depth[J]. Marine Equipment Materials & Marketing, 2019(1): 37−38.
    [3] Young C W. Penetration equations[R]. Albuquerque, New Mexico: Sandia National Laboratories, 1997: 4−12.
    [4] Raie M S, Tassoulas J L. Installation of torpedo anchors: numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1805−1813. doi: 10.1061/(ASCE)GT.1943-5606.0000159
    [5] 韩聪聪, 陈学俭, 刘君. 霍尔锚抛锚深度模型试验研究[J]. 海洋工程, 2018, 36(5): 90−98.

    Han Congcong, Chen Xuejian, Liu Jun. Model tests on penetration depth of hall anchor[J]. The Ocean Engineering, 2018, 36(5): 90−98.
    [6] Han Congcong, Chen Xuejian, Liu Jun. Physical and numerical modeling of dynamic penetration of ship anchor in clay[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019, 145(1): 04018030. doi: 10.1061/(ASCE)WW.1943-5460.0000490
    [7] 洪大林, 谢瑞, 张思和, 等. 苏通长江公路大桥桥区河床抗冲性能试验研究[J]. 海洋工程, 2003, 21(4): 91−96. doi: 10.3969/j.issn.1005-9865.2003.04.015

    Hong Dalin, Xie Rui, Zhang Sihe, et al. Experiment test on river-bed erosion-resistant characteristics in the bridge region of Su-tong Yangtze River Highway Bridge[J]. The Ocean Engineering, 2003, 21(4): 91−96. doi: 10.3969/j.issn.1005-9865.2003.04.015
    [8] 戚秀莲, 朱元生. 长江口南港河段水文泥沙特性及河床演变分析[J]. 海洋工程, 2000, 18(4): 74−79. doi: 10.3969/j.issn.1005-9865.2000.04.013

    Qi Xiulian, Zhu Yuansheng. Characteristics of hydrology and sediment and evolution of river bed in the southern branch of Yangtze Estuary[J]. Ocean Engineering, 2000, 18(4): 74−79. doi: 10.3969/j.issn.1005-9865.2000.04.013
    [9] 李晓松, 孔宪卫. 船舶应急抛锚贯入深度研究[J]. 中国水运, 2017, 17(12): 15−16.

    Li Xiaosong, Kong Xianwei. Research on emergency anchoring penetration depth[J]. China Water Transport, 2017, 17(12): 15−16.
    [10] 杜颖, 陈峰, 徐伟. 砂土基质下落锚深度试验研究及计算方法[J]. 南方能源建设, 2018, 5(S1): 222−227.

    Du Ying, Chen Feng, Xu Wei. Experimental study and calculation method of falling anchor depth under sand soil[J]. Southern Energy Construction, 2018, 5(S1): 222−227.
    [11] 国家技术监督局. GB/T 546−1997, 霍尔锚[S]. 北京: 中国标准出版社, 1997.

    The State Bureau of Technology Supervision. GB/T 546−1997, Hall anchor[S]. Beijing: China Standard Press, 1997.
    [12] 国家质量技术监督局, 中华人民共和国建设部. GB/T 50123−1999, 土工试验方法标准[S]. 北京: 中国计划出版社, 1999.

    The State Bureau of Quality and Technical Supervision, Ministry of Construction, People’s Republic of China. GB/T 50123−1999, Standard for soil test method[S]. Beijing: China Planning Press, 1999.
    [13] DNV. DNV-RP-F107, Risk assessment of pipeline protection[S]. DNV, 2010.
    [14] 陈占刚. 从设计角度分析船舶进出港口通航安全控制[J]. 中国水运, 2008, 8(6): 14−15.

    Chen Zhan’gang. Analysis of navigation safety control of ships inward and outward the port from design perspective[J]. China Water Transport, 2008, 8(6): 14−15.
    [15] 于洋. 海洋运输船舶首锚重量统计分析[J]. 大连海事大学学报, 2016, 42(4): 33−40.

    Yu Yang. A statistic analysis of bow anchor weights of sea-going merchant ships[J]. Journal of Dalian Maritime University, 2016, 42(4): 33−40.
    [16] 中华人民共和国交通运输部. JTS 165−2013, 海港总体设计规范[S]. 北京: 人民交通出版社, 2014.

    Ministry of Transport of the People’s Republic of China. JTS 165−2013, Design code of general layout for sea ports[S]. Beijing: China Communications Press, 2014.
    [17] Hansen J B. A revised and extended formula for bearing capacity[J]. Danish Geotechnical Institute Bulletin, 1970, 28(28): 5−11.
    [18] Meyerhof G G. Some recent research on the bearing capacity of foundations[J]. Canadian Geotechnical Journal, 1963, 1(1): 16−26. doi: 10.1139/t63-003
    [19] Terzaghi K, Perk R B, Mesri G. Soil Mechanics in Engineering Practice[M]. New York: John Wiley & Sons, 1967.
    [20] Vesic A S. Analysis of ultimate loads of shallow foundations[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(1): 45−73.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  37
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 修回日期:  2020-02-22
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回