留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底峡谷内浊流流动与沉积特征数值模拟研究

王越 孙永福 修宗祥 宋玉鹏 王柯萌 谢秋红

王越,孙永福,修宗祥,等. 海底峡谷内浊流流动与沉积特征数值模拟研究[J]. 海洋学报,2020,42(11):75–87 doi: 10.3969/j.issn.0253-4193.2020.11.008
引用本文: 王越,孙永福,修宗祥,等. 海底峡谷内浊流流动与沉积特征数值模拟研究[J]. 海洋学报,2020,42(11):75–87 doi: 10.3969/j.issn.0253-4193.2020.11.008
Wang Yue,Sun Yongfu,Xiu Zongxiang, et al. Numerical simulation of turbidity current and sediment characteristics in submarine canyons[J]. Haiyang Xuebao,2020, 42(11):75–87 doi: 10.3969/j.issn.0253-4193.2020.11.008
Citation: Wang Yue,Sun Yongfu,Xiu Zongxiang, et al. Numerical simulation of turbidity current and sediment characteristics in submarine canyons[J]. Haiyang Xuebao,2020, 42(11):75–87 doi: 10.3969/j.issn.0253-4193.2020.11.008

海底峡谷内浊流流动与沉积特征数值模拟研究

doi: 10.3969/j.issn.0253-4193.2020.11.008
基金项目: 国家重点研发计划课题(2017YFC0307305);国家自然科学基金(41876066,41606084);山东省自然科学基金(ZR2017QD004)。
详细信息
    作者简介:

    王越(1996-),女,河北省邢台市人,主要从事海洋工程地质研究。E-mail:wangyuefio@163.com

    通讯作者:

    孙永福(1964-),男,山东省潍坊市人,博士,研究员,主要从事海洋工程地质研究。E-mail:sunyongfu@fio.org.cn

  • 中图分类号: P736.2

Numerical simulation of turbidity current and sediment characteristics in submarine canyons

  • 摘要: 数值模拟已成为研究海底浊流的重要方式,开展海底浊流的流动与沉积特征的数值模拟,对深水沉积体系特征研究、海底工程设施稳定性评价以及深海油气勘探均具有重要意义。本文基于不可压缩流体Navier-Stokes方程与湍流k-ε模型构建了浊流数值计算模型,设定不同粒径、速度与悬浮颗粒物浓度等初始条件,模拟并分析了单粒径悬浮颗粒驱动的持续入流的海底浊流沿海底连续坡折带的流动过程及沉积特征。模拟结果显示,浊流在斜坡段处于加速状态,水平段流速骤减并逐渐沉积,且浊流在小坡度的加速不改变浊流的沉积趋势。浊流由于环境水体的夹带效应逐渐增厚,且浊流头部形态与流动特征与实测资料吻合良好。本文另对多频次持续入流浊流进行了模拟,并将模拟结果与实测地层沉积特征对比,结果显示,多频次持续入流的海底浊流在纵向上可能会形成多个不连续鲍玛层序的叠积。
  • 图  1  计算网格(加粗区域为近壁面网格)

    Fig.  1  The mathematic grid (the bold area is the near-wall grid)

    图  2  Garcia和Parker[3]实验装置图

    Fig.  2  The experiment device schematic of Garcia and Parker[3]

    图  3  实验中模型3 m处(a)和8 m处(b)浊流垂向速度剖面与模拟结果对比(坡折带在模型5 m处)

    Fig.  3  Comparison the vertical velocity profiles of laboratory and simulation results at the sites 3 m (a) and 8 m (b) from the inlet (the break in slope is at 5 m from the inlet)

    图  4  200 s时浊流头部的速度分布(图a−f对应工况1−6)

    Fig.  4  Velocity profile of turbidity current head at 200 s in each case (a−f corresponds to case 1−6)

    图  5  200 s时浊流头部密度分布(图a−f对应工况1−6)

    Fig.  5  Density profile of turbidity current head at 200 s in each case (a−f corresponds to case 1−6)

    图  6  浊流到达4.1 m处垂向速度剖面

    第一个坡折带在模型5.1 m处;a. 不同的颗粒粒径条件下;b. 不同的入流速度条件下;c. 不同的颗粒浓度条件下

    Fig.  6  Vertical velocity profiles at 4.1 m when turbidity current arrives

    The first break in slope is at 5.1 m from the inlet; a. under different particle size in inlet condition; b. under different velocity in inlet condition; c. under different particle concentration in inlet condition

    图  7  浊流到达6.1 m处垂向速度剖面

    第一个坡折带在模型5.1 m处;a. 不同的颗粒粒径条件下;b. 不同的入流速度条件下;c. 不同的颗粒浓度条件下

    Fig.  7  Vertical velocity profiles at 6.1 m when turbidity current arrives

    The first break in slope is at 5.1 m from the inlet; a. under different particle size in inlet condition; b. under different velocity in inlet condition; c. under different particle concentration in inlet condition

    图  8  浊流到达10.6 m处垂向速度剖面

    第二个坡折带在模型11.6m处;a. 不同的颗粒粒径条件下;b. 不同的入流速度条件下;c. 不同的颗粒浓度条件下

    Fig.  8  Vertical velocity profiles at 10.6 m when turbidity current arrives

    The second break in slope is at 11.6 m from the inlet; a. under different particle size in inlet condition; b. under different velocity in inlet condition; c. under different particle concentration in inlet condition

    图  9  浊流到达12.6 m处垂向速度剖面

    第二个坡折带在模型11.6m处;a. 不同的颗粒粒径条件下;b. 不同的入流速度条件下;c. 不同的颗粒浓度条件下

    Fig.  9  Vertical velocity profiles at 12.6 m when turbidity current arrives

    The second break in slope is at 11.6 m from the inlet; a. under different particle size in inlet condition; b. under different velocity in inlet condition; c. under different particle concentration in inlet condition

    图  10  200 s时浊流在各坡折带的速度剖面对比

    a. 4.1 m处;b. 6.1 m处; c. 10.6 m处; d. 12.6 m处;第一个坡折带在模型5.1 m处,第二个坡折带在模型11.6 m处

    Fig.  10  Comparsion of the velocity profiles around the slope break at 200 s

    a−d corresponds to the the slope break in 4.1 m, 6.1 m, 10.6 m and 12.6 m; the first break in slope is at 5.1 m from the inlet, the second break in slope is at 11.6 m from the inlet

    图  11  200 s时浊流悬浮颗粒在底床的体积浓度分布

    a, b. 不同的颗粒粒径条件下;c. 不同的入流速度条件下;d. 不同的颗粒浓度条件下

    Fig.  11  Distribution of volume fraction along the slope bottom of turbid suspended particles at 200 s

    a, b. under different particle size in inlet condition; c. under different velocity in inlet condition; d. under different particle concentration in inlet condition

    图  12  200 s时浊流在底床沉积分布(图a−f对应工况1−6)

    Fig.  12  Distribution of the sediments deposit along the slope bottom of turbidity current at 200 s (a−f corresponds to case 1−6)

    图  13  浊流头部特征示意图

    a. 理论结果,据文献[37];b. 模拟结果,箭头指示颗粒速度方向

    Fig.  13  Protection characteristics of turbid head

    a. Theory result, according to reference [37];b. numerical result, the arrow indicates the direction of particle velocity

    图  14  实测浊流头部速度(a)与悬浮物浓度(b)[38]

    Fig.  14  Velocity (a) and suspended sediment concentration (b) of turbidity head[38]

    图  15  两次间歇性持续入流浊流的沉积分布

    Fig.  15  Sediment distribution of twice continuous inflow turbidity current

    图  16  枋寮峡谷粗砂粒度分布[41]

    a. 大陆架;b. 距峡谷头部13 km处;c. 距峡谷头部21 km处;d. 距峡谷头部26 km

    Fig.  16  Volume fraction of sand in the Fangliao Canyon[41]

    a. Continental shelf; b. 13 km above the canyon head; c. 21 km above the canyon head; d. 26 km above the canyon head

    表  1  初始入流条件

    Tab.  1  Numerical simulation initial conditions

    工况粒径/mm颗粒物体积浓度/%速度/m·s−1
    工况10.005(黏土)100.5
    工况20.05(粉砂)100.5
    工况30.05(粉砂)101.0
    工况40.05(粉砂)200.5
    工况50.50(粗砂)100.5
    工况61 (粗砂)100.5
    下载: 导出CSV
  • [1] Middleton G V. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 89−114. doi: 10.1146/annurev.ea.21.050193.000513
    [2] 方爱民, 李继亮, 侯泉林. 浊流及相关重力流沉积研究综述[J]. 地质论评, 1998, 44(3): 270−280. doi: 10.3321/j.issn:0371-5736.1998.03.007

    Fang Aimin, Li Jiliang, Hou Quanlin. Sedimentation of turbidity currents and relative gravity flows: a review[J]. Geological Review, 1998, 44(3): 270−280. doi: 10.3321/j.issn:0371-5736.1998.03.007
    [3] Garcia M, Parker G. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition[J]. Science, 1989, 245(4916): 393−396. doi: 10.1126/science.245.4916.393
    [4] Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan[J]. Marine Geology, 2016, 384: 147−158.
    [5] Forel F A. Les ravins sous-lacustre des fleuves glaciaires[J]. Bulletin de la Société vaudoise des ingénieurs et des architectes, 1885, 101: 725−728.
    [6] Daly R A. Origin of submarine canyons[J]. American Journal of Science, 1936, 31(186): 401−420.
    [7] Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2): 327−351.
    [8] Bell H S. Studies for students: density currents as agents for transporting sediments[J]. The Journal of Geology, 1942, 50(5): 512−547. doi: 10.1086/625070
    [9] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10): 98−105.

    Xu Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98−105.
    [10] Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8(1): 275−310. doi: 10.1146/annurev.fl.08.010176.001423
    [11] Dengler A T, Wilde P, Noda E K, et al. Turbidity currents generated by Hurricane Iwa[J]. Geo-Marine Letters, 1984, 4(1): 5−11. doi: 10.1007/BF02237967
    [12] Prior D B, Bornhold B D, Wiseman W J, et al. Turbidity current activity in a British Columbia Fjord[J]. Science, 1987, 237(4820): 1330−1333. doi: 10.1126/science.237.4820.1330
    [13] Zeng Jianjun, Lowe D R, Prior D B, et al. Flow properties of turbidity currents in Bute Inlet, British Columbia[J]. Sedimentology, 1991, 38(6): 975−996. doi: 10.1111/j.1365-3091.1991.tb00367.x
    [14] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552−558. doi: 10.11867/j.issn.1001-8166.2013.05.0552

    Xu Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552−558. doi: 10.11867/j.issn.1001-8166.2013.05.0552
    [15] Kuenen H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91−127. doi: 10.1086/625710
    [16] Middleton G V. Experiments on density and turbidity currents: III. deposition of sediment[J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475−505. doi: 10.1139/e67-025
    [17] Garcia M H, Parker G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research, 1993, 98(C3): 4793−4807. doi: 10.1029/92JC02404
    [18] Islam M A, Imran J. Vertical structure of continuous release saline and turbidity currents[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08025.
    [19] Britter R E, Simpson J E. Experiments on the dynamics of a gravity current head[J]. Journal of Fluid Mechanics, 1978, 88(2): 223−240. doi: 10.1017/S0022112078002074
    [20] Huang Heqing, Chen Guang, Zhang Qianfeng. The distribution characteristics of pollutants released at different cross-sectional positions of a river[J]. Environmental Pollution, 2010, 158(5): 1327−1333. doi: 10.1016/j.envpol.2010.01.010
    [21] Huang Heqing, Imran J, Pirmez C. Nondimensional parameters of depth-averaged gravity flow models[J]. Journal of Hydraulic Research, 2009, 47(4): 455−465. doi: 10.1080/00221686.2009.9522021
    [22] Huang Heqing, Imran J, Pirmez C. The depositional characteristics of turbidity currents in submarine sinuous channels[J]. Marine Geology, 2012, 329−331: 93−102. doi: 10.1016/j.margeo.2012.08.003
    [23] Huang H, Imran J, Pirmez C. Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research: Oceans, 2007, 112(C1): C01014.
    [24] Huang Heqing, Imran J, Pirmez C. Numerical model of turbidity currents with a deforming bottom boundary[J]. Journal of Hydraulic Engineering, 2005, 131(4): 283−293.
    [25] Huang Heqing, Imran J, Pirmez C. Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms[J]. Journal of Hydraulic Engineering, 2008, 134(9): 1199−1209. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1199)
    [26] Kassem A, Imran J. Three-dimensional modeling of density current. II. Flow in sinuous confined and uncontined channels[J]. Journal of Hydraulic Research, 2004, 42(6): 591−602. doi: 10.1080/00221686.2004.9628313
    [27] Strauss M, Glinsky M E. Turbidity current flow over an erodible obstacle and phases of sediment wave generation[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06007.
    [28] Giorgio S F, Peakall J, Ingham D B, et al. A unifying computational fluid dynamics investigation on the river-like to river-reversed secondary circulation in submarine channel bends[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06012.
    [29] 姜涛, 解习农, 汤苏林. 浊流形成条件的水动力学模拟及其在储层预测方面的作用[J]. 地质科技情报, 2005, 24(2): 1−6. doi: 10.3969/j.issn.1000-7849.2005.02.001

    Jiang Tao, Xie Xinong, Tang Sulin, et al. Hydrodynamic simulation of turbidity and its application for reservoir prediction[J]. Geological Science and Technology Information, 2005, 24(2): 1−6. doi: 10.3969/j.issn.1000-7849.2005.02.001
    [30] 姜涛, 解习农, 汤苏林, 等. 浊流成因海底沉积波形成机理及其数值模拟[J]. 科学通报, 2007, 52(16): 1945−1950. doi: 10.3321/j.issn:0023-074x.2007.16.017

    Jiang Tao, Xie Xinong, Tang Sulin, et al. Formation mechanism and numerical simulation of submarine sedimentary wave of turbidity current[J]. Chinese Science Bulletin, 2007, 52(16): 1945−1950. doi: 10.3321/j.issn:0023-074x.2007.16.017
    [31] Jiang Tao, Zhang Yingzhao, Tang Sulin, et al. CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(12): 127−137. doi: 10.1007/s13131-014-0582-7
    [32] Georgoulas A N, Angelidis P B, Panagiotidis T G, et al. 3D numerical modelling of turbidity currents[J]. Environmental Fluid Mechanics, 2010, 10(6): 603−635. doi: 10.1007/s10652-010-9182-z
    [33] 郭彦英, 黄河清. 海底浊流在坡道转换处的流动及沉积的数值模拟[J]. 沉积学报, 2013, 31(6): 994−1000.

    Guo Yanying, Huang Heqing. Numerical simulation of the flow and deposition of turbidity currents with different slope changes[J]. Acta Sedimentologica Sinica, 2013, 31(6): 994−1000.
    [34] Middleton G V. Submarine fans and channels[M]//Sedimentology. Encyclopedia of Earth Science. Berlin, Heidelberg: Springer, 1978.
    [35] Muck M T, Underwood M B, 高振中. 浊流爬坡流动的实地观察, 理论和实验模型的对比[J]. 地质科学译丛, 1991, 8(4): 66−70.

    Muck M, Underwood M B, Gao Zhenzhong. Upslope flow of turbidity currents: A comparison among field observations, theory, and laboratory models[J]. China Academic Journal Electronic Publishing House, 1991, 8(4): 66−70.
    [36] 姜辉. 浊流沉积的动力学机制与响应[J]. 石油与天然气地质, 2010, 31(4): 428−435. doi: 10.11743/ogg20100405

    Jiang Hui. Dynamical mechanism and depositional responses of turbidity current sedimentation[J]. Oil & Gas Geology, 2010, 31(4): 428−435. doi: 10.11743/ogg20100405
    [37] 张一乙, 杨旸, 陈景东, 等. 悬沙组分对再悬浮过程响应的初步研究—以长江口南槽口门为例[J]. 海洋科学, 2016, 40(11): 129−137. doi: 10.11759/hykx20131212001

    Zhang Yiyi, Yang Yang, Chen Jingdong, et al. Preliminary study of the response of suspended sediment components to resuspension processes in the mouth of the South Channel, Changjiang River Estuary[J]. Marine Sciences, 2016, 40(11): 129−137. doi: 10.11759/hykx20131212001
    [38] Azpiroz-Zabala M, Cartigny M J B, Talling P J, et al. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons[J]. Science Advances, 2017, 3(10): e1700200. doi: 10.1126/sciadv.1700200
    [39] Ercilla G, Wynn R B, Alonso B, et al. Initiation and evolution of turbidity current sediment waves in the Magdalena turbidite system[J]. Marine Geology, 2002, 192(1/3): 153−169.
    [40] Hale R P, Nittrouer C A, Liu J T, et al. Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon, SW Taiwan[J]. Marine Geology, 2012, 326−328: 116−130. doi: 10.1016/j.margeo.2012.07.008
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  20
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-03-13
  • 网络出版日期:  2020-11-20
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回