留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海东北部峡谷体系的地貌特征与发育控制因素

王玉宾 吴自银 尚继宏 殷绍如 赵荻能 周洁琼

王玉宾,吴自银,尚继宏,等. 南海东北部峡谷体系的地貌特征与发育控制因素[J]. 海洋学报,2020,42(11):62–74 doi: 10.3969/j.issn.0253-4193.2020.11.007
引用本文: 王玉宾,吴自银,尚继宏,等. 南海东北部峡谷体系的地貌特征与发育控制因素[J]. 海洋学报,2020,42(11):62–74 doi: 10.3969/j.issn.0253-4193.2020.11.007
Wang Yubin,Wu Ziyin,Shang Jihong, et al. Morphologic characteristics and controlling factors of the northeastern South China Sea canyon group[J]. Haiyang Xuebao,2020, 42(11):62–74 doi: 10.3969/j.issn.0253-4193.2020.11.007
Citation: Wang Yubin,Wu Ziyin,Shang Jihong, et al. Morphologic characteristics and controlling factors of the northeastern South China Sea canyon group[J]. Haiyang Xuebao,2020, 42(11):62–74 doi: 10.3969/j.issn.0253-4193.2020.11.007

南海东北部峡谷体系的地貌特征与发育控制因素

doi: 10.3969/j.issn.0253-4193.2020.11.007
基金项目: 国家自然科学基金(41830540);所长基金课题(JZ1902,SZ2002,JG2005);上海交通大学深蓝基金(SL2020ZD204);全球变化与海气相互作用专项(GASI-EOGE-01)。
详细信息
    作者简介:

    王玉宾(1995-),男,山东省潍坊市人,主要从事多波束海底地形地貌及海洋地球物理勘测研究。E-mail:wangyb@sio.org.cn

    通讯作者:

    吴自银(1972-),男,河南省光山县人,研究员,主要从事海底高分辨率地貌学研究。E-mail:zywu@vip.163.com

  • 中图分类号: P737.2

Morphologic characteristics and controlling factors of the northeastern South China Sea canyon group

  • 摘要: 海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。
  • 图  1  南海东北部海底峡谷与断裂系统(a)(断裂根据文献[18]修改)和海底峡谷多波束地形(b)

    ①高屏海底峡谷,②澎湖海底峡谷,③台湾浅滩南海底峡谷,④东沙海底峡谷,⑤神狐峡谷群,⑥珠江口外海底峡谷

    Fig.  1  Submarine canyons and faults in the northeastern South China Sea (a, faults modified according to reference [18]), and multi-beam bathymetric of the submarine canyons (b)

    ①Kaoping submarine canyon, ②Penghu submarine canyon, ③South Taiwan Bank submarine canyon, ④Dongsha submarine canyon, ⑤Shenhu submarine canyon group, ⑥Zhujiang River submarine canyon

    图  2  高屏海底峡谷地形

    红色实线为峡谷主轴,黑色虚线为地形剖面位置

    Fig.  2  Bathymetric of the Kaoping submarine canyon

    The red line is the main axis of the canyon, and the black dashed lines are the locations of bathymetric profiles

    图  3  垂直高屏海底峡谷的地形剖面系列图(各剖面位置见图2

    Fig.  3  Bathymetric profiles perpendicular to the Kaoping submarine canyon (see their location in Fig.2)

    图  4  澎湖海底峡谷地形

    红色实线为峡谷主轴,黑色虚线为地形剖面位置

    Fig.  4  Bathymetric of the Penghu submarine canyon

    The red line is the main axis of the canyon, and the black dashed lines are the locations of bathymetric profiles

    图  5  垂直澎湖海底峡谷的地形剖面系列图(各剖面位置见图4

    Fig.  5  Bathymetric profiles perpendicular to the Penghu submarine canyon (see their locations in Fig.4)

    图  6  台湾浅滩南海底峡谷地形

    红色实线为峡谷主轴,黑色虚线为地形剖面位置

    Fig.  6  Bathymetric of the South Taiwan Bank submarine canyon

    The red line is the main axis of the canyon, and the black dashed lines are the locations of bathymetric profiles

    图  7  垂直台湾浅滩南海底峡谷的地形剖面系列图(各剖面位置见图6

    Fig.  7  Bathymetric profiles perpendicular to the South Taiwan Bank submarine canyon (see their locations in Fig.6)

    图  8  东沙海底峡谷地形

    红色实线为峡谷主轴,黑色虚线为地形剖面位置,A-A′及B-B′为多道地震剖面位置

    Fig.  8  Bathymetric of the Dongsha submarine canyon

    The red line is the main axis of the canyon, the black dashed lines are the locations of bathymetric profiles, A-A′ and B-B′ are the locations of multi-channel seismic profiles

    图  9  垂直东沙海底峡谷的地形剖面系列图(各剖面位置见图8

    Fig.  9  Bathymetric profiles perpendicular to the Dongsha submarine canyon (see their loactions in Fig.8)

    图  10  南海东北部峡谷群坡度图

    Fig.  10  Slope map of northeastern South China Sea canyon group

    图  11  高屏海底峡谷地形及构造示意(构造根据文献[42]修改)

    Fig.  11  Bathymetric and structure of the Kaoping submarine canyon (structure modified according to reference [42])

    图  12  东沙海底峡谷北部海丘及海山三维地形(位置见图1

    Fig.  12  Three-dimension bathymetric of the seamount and the seaknoll in the north of the Dongsha submarine canyon (see the location in Fig.1)

    图  13  南海东北部沉积物波三维地形(位置见图1

    Fig.  13  Three-dimension bathymetric of the sediment waves in the northeastern South China Sea (see the location in Fig.1)

    图  14  穿越东沙海底峡谷中段A-A′地震剖面及其解释(根据文献[22]修改,位置见图8

    Fig.  14  The A-A′ seismic profile passing through the middle section of Dongsha submarine canyon and its interpretation (modified according to reference [22], see the location in Fig.8)

    图  15  穿越东沙海底峡谷下段B-B′地震剖面及其解释(根据文献[22]修改,位置见图8

    Fig.  15  The B-B′ seismic profile passing through the lower section of Dongsha submarine canyon and its interpretation (modified according to reference [22], see the location in Fig.8)

  • [1] Shepard F P. Submarine Geology[M]. New York: Harper & Row, 1963.
    [2] Shepard F P. Submarine canyons[J]. Earth-Science Reviews, 1949, 8(1): 1−12.
    [3] 韩喜彬, 李家彪, 龙江平, 等. 我国海底峡谷研究进展[J]. 海洋地质前沿, 2010, 26(2): 41−48.

    Han Xibin, Li Jiabiao, Long Jiangping, et al. Development of research on submarine canyon in China[J]. Marine Geology Letters, 2010, 26(2): 41−48.
    [4] Lewis K B, Barnes P M. Kaikoura Canyon, New Zealand: active conduit from near-shore sediment zones to trench-axis channel[J]. Marine Geology, 1999, 162(1): 39−69. doi: 10.1016/S0025-3227(99)00075-4
    [5] Posamentier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition I—conceptual framework[C]//Sea-Level Changes—An Integrated Approach, SEPM Special Publication. 1988.
    [6] Antobreh A A, Krastel S. Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region[J]. Marine and Petroleum Geology, 2006, 23(1): 37−59. doi: 10.1016/j.marpetgeo.2005.06.003
    [7] Pickering K, Coleman J, Cremer M, et al. A high sinuosity, laterally migrating submarine fan channel-levee-overbank: results from DSDP Leg 96 on the Mississippi Fan, Gulf of Mexico[J]. Marine and Petroleum Geology, 1986, 3(1): 3−18. doi: 10.1016/0264-8172(86)90052-8
    [8] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报: 自然科学版, 2014, 44(10): 98−105.

    Xu Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98−105.
    [9] Carter L, Milliman J D, Talling P J, et al. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan[J]. Geophysical Research Letters, 2012, 39(12): 12603.
    [10] 吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌–可视计算与科学应用[M]. 北京: 科学出版社, 2017.

    Wu Ziyin, Yang Fanlin, Li Shoujun, et al. High Resolution Submarine Geomorphology: Visual Computing and Scientific Applications[M]. Beijing: Science Press, 2017.
    [11] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌—探测处理理论与技术[M]. 北京: 科学出版社, 2017.

    Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High Resolution Submarine Geomorphology: Detection Processing Theory and Technology[M]. Beijing: Science Press, 2017.
    [12] Taylor B, Smoot N C. Morphology of Bonin fore-arc submarine canyons[J]. Geology, 1984, 12(12): 724−727. doi: 10.1130/0091-7613(1984)12<724:MOBFSC>2.0.CO;2
    [13] 吴自银, 王小波, 金翔龙, 等. 冲绳海槽弧后扩张证据及关键问题探讨[J]. 海洋地质与第四纪地质, 2004, 24(3): 67−76.

    Wu Ziyin, Wang Xiaobo, Jin Xianglong, et al. The evidences of the backarc spreading and discussion on the key issues in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2004, 24(3): 67−76.
    [14] Wu Ziyin, Li Jiabiao, Jin Xianglong, et al. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough[J]. Science China Earth Sciences, 2014, 57(8): 1885−1896. doi: 10.1007/s11430-013-4810-3
    [15] Jobe Z R, Lowe D R, Uchytil S J. Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea[J]. Marine and Petroleum Geology, 2011, 28(3): 843−860. doi: 10.1016/j.marpetgeo.2010.07.012
    [16] Yin Shaoru, Lin Lin, Pope E L, et al. Continental slope-confined canyons in the Pearl River Mouth Basin in the South China Sea dominated by erosion, 2004−2018[J]. Geomorphology, 2019, 344: 60−74. doi: 10.1016/j.geomorph.2019.07.016
    [17] 赵家斌, 钟广法. 构造活动对海底峡谷地貌形态的影响[J]. 海洋地质前沿, 2018(12): 1−13.

    Zhao Jiabin, Zhong Guangfa. A review on geomorphic response of submarine canyons to tectonic deformation[J]. Marine Geology Frontiers, 2018(12): 1−13.
    [18] 丁巍伟, 李家彪, 李军. 南海北部陆坡海底峡谷形成机制探讨[J]. 海洋学研究, 2010, 28(1): 26−31. doi: 10.3969/j.issn.1001-909X.2010.01.004

    Ding Weiwei, Li Jiabiao, Li Jun. Forming mechanism of the submarine canyon on the north slope of the South China Sea[J]. Journal of Marine Sciences, 2010, 28(1): 26−31. doi: 10.3969/j.issn.1001-909X.2010.01.004
    [19] Zhang Yanwei, Liu Zhifei, Zhao Yulong, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8): 675−678. doi: 10.1130/G45178.1
    [20] 苏明, 解习农, 王振峰, 等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报, 2013, 34(3): 467−478. doi: 10.7623/syxb201303007

    Su Ming, Xie Xinong, Wang Zhenfeng, et al. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea[J]. Acta Petrolei Sinica, 2013, 34(3): 467−478. doi: 10.7623/syxb201303007
    [21] 丁巍伟, 李家彪, 李军, 等. 南海珠江口外海底峡谷形成的控制因素及过程[J]. 热带海洋学报, 2013, 32(6): 63−72. doi: 10.3969/j.issn.1009-5470.2013.06.010

    Ding Weiwei, Li Jiabiao, Li Jun, et al. Formation process and controlling factors of the Pearl River Canyon in the South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(6): 63−72. doi: 10.3969/j.issn.1009-5470.2013.06.010
    [22] 殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 2015, 58(6): 971−985. doi: 10.1007/s11430-014-5044-8

    Yin Shaoru, Wang Liaoliang, Guo Yiqun, et al. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea[J]. Science China: Earth Science, 2015, 58(6): 971−985. doi: 10.1007/s11430-014-5044-8
    [23] 徐尚, 王英民, 彭学超, 等. 台湾峡谷的成因及其对沉积的控制[J]. 中国科学: 地球科学, 2014, 44(9): 1913−1924.

    Xu Shang, Wang Yingmin, Peng Xuechao, et al. Origin of Taiwan Canyon and its effects on deepwater sediment[J]. Science China: Earth Science, 2014, 44(9): 1913−1924.
    [24] Yu H S, Chang J F. The Penghu submarine canyon off southwestern Taiwan: Morphology and origin[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2002, 13(4): 547−562. doi: 10.3319/TAO.2002.13.4.547(O)
    [25] Liu C S, Lundberg N, Reed D L, et al. Morphological and seismic characteristics of the Kaoping Submarine Canyon[J]. Marine Geology, 1993, 111(1/2): 93−108.
    [26] Chiang C S, Yu H S. Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge[J]. Geomorphology, 2006, 80(3/4): 199−213.
    [27] Chiang C S, Yu H. Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan[J]. Geo-Marine Letters, 2008, 28(3): 161−169. doi: 10.1007/s00367-007-0098-7
    [28] Yu H S, Chiang C S, Shen Sumin. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4): 369−382. doi: 10.1016/j.jmarsys.2007.07.010
    [29] Zhao Dineng, Wu Ziyin, Zhou Jieqiong, et al. A new method of automatic SVP optimization based on MOV algorithm[J]. Marine Geodesy, 2015, 38(3): 225−240. doi: 10.1080/01490419.2015.1006798
    [30] Zhou Jieqiong, Wu Ziyin, Jin Xianlong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea[J]. Marine Geology, 2018, 406: 132−141. doi: 10.1016/j.margeo.2018.09.015
    [31] 杜德莉. 台西南盆地地质构造特征及油气远景[J]. 海洋地质与第四纪地质, 1991, 11(3): 21−33.

    Du Deli. Characteristics of geologic structure and hydrocarbon potential of the southwest Taiwan basin[J]. Marine Geology & Quaternary Geology, 1991, 11(3): 21−33.
    [32] 易海, 钟广见, 马金凤. 台西南盆地新生代断裂特征与盆地演化[J]. 石油实验地质, 2007, 29(6): 560−564. doi: 10.3969/j.issn.1001-6112.2007.06.006

    Yi Hai, Zhong Guangjian, Ma Jinfeng. Fracture characteristics and basin evolution of the Taixinan basin in Cenozoic[J]. Petroleum Geology & Experiment, 2007, 29(6): 560−564. doi: 10.3969/j.issn.1001-6112.2007.06.006
    [33] Taylor B, Hayes D E. Origin and history of the South China Sea basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington, D.C.: Geophysical Monograph Series, 1983, 27: 23−56.
    [34] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299−6328. doi: 10.1029/92JB02280
    [35] Hutchison C S. Marginal basin evolution: the southern South China Sea[J]. Marine and Petroleum Geology, 2004, 21(9): 1129−1148. doi: 10.1016/j.marpetgeo.2004.07.002
    [36] 栾锡武, 彭学超, 王英民, 等. 南海北部陆架海底沙波基本特征及属性[J]. 地质学报, 2010, 84(2): 233−245.

    Luan Xiwu, Peng Xuechao, Wang Yingming, et al. Characteristics of sand waves on the northern South China Sea shelf and its formation[J]. Acta Geologica Sinica, 2010, 84(2): 233−245.
    [37] 黄镇国. 台湾板块构造与环境演变[M]. 北京: 海洋出版社, 1995.

    Huang Zhenguo. Plate Tectonics and Environmental Evolution in Taiwan[M]. Beijing: China Ocean Press, 1995.
    [38] 张开毕, 徐维光, 陈淑华, 等. 台湾区域地质概论[J]. 福建地质, 2017, 36(2): 79−93. doi: 10.3969/j.issn.1001-3970.2017.02.001

    Zhang Kaibi, Xu Weiguang, Chen Shuhua, et al. Geological survey in Taiwan area[J]. Geology of Fujian, 2017, 36(2): 79−93. doi: 10.3969/j.issn.1001-3970.2017.02.001
    [39] Zheng Zhuo, Li Qianyu. Vegetation, climate, and sea level in the Past 55, 000 years, Hanjiang delta, southeastern China[J]. Quaternary Research, 2000, 53(3): 330−340. doi: 10.1006/qres.1999.2126
    [40] 黄慈流, 钟建强. 南海东北部及其邻区新生代构造事件[J]. 热带海洋, 1994, 13(1): 55−62.

    Huang Ciliu, Zhong Jianqiang. Tectonic events in the Cenozoic era in the northeast area of south China sea and its neighboring regions[J]. Tropic Oceanography, 1994, 13(1): 55−62.
    [41] 赵淑娟, 吴时国, 施和生, 等. 南海北部东沙运动的构造特征及动力学机制探讨[J]. 地球物理学进展, 2012, 27(3): 1008−1019. doi: 10.6038/j.issn.1004-2903.2012.03.022

    Zhao Shujuan, Wu Shiguo, Shi Hesheng, et al. Structures and dynamic mechanism related to the Dongsha movement at the northern margin of South China Sea[J]. Progress in Geophysics, 2012, 27(3): 1008−1019. doi: 10.6038/j.issn.1004-2903.2012.03.022
    [42] Liu C S, Huang I L, Teng L S. Structural features off southwestern Taiwan[J]. Marine Geology, 1997, 137(3/4): 305−319.
    [43] 黄任亿. 台灣西南海域高屏陸坡盆地及澎湖海底峽谷—水道系統的沉積作用及演化[D]. 台北: 台湾大学海洋研究所, 2006.

    Huang Renyi. Sedimentation and evolution of Kaoping slope basin and penghu submarine canyon—channel system off southwest Taiwan[D]. Taipei: Institute of Oceanography, Taiwan University, 2006.
    [44] Organization I H. Standardization of Undersea Feature Names[Z]. International Hydrographic Organization Monaco, 2008.
    [45] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1/3): 7−22.
  • 加载中
图(15)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  84
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2020-01-07
  • 网络出版日期:  2020-11-23
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回