留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珊瑚礁区海底地下水排泄的环境效应及其珊瑚记录研究进展

姜伟 杨浩丹 吴星媛 余克服 许慎栋 王英辉

姜伟,杨浩丹,吴星媛,等. 珊瑚礁区海底地下水排泄的环境效应及其珊瑚记录研究进展[J]. 海洋学报,2020,42(11):1–11 doi: 10.3969/j.issn.0253-4193.2020.11.001
引用本文: 姜伟,杨浩丹,吴星媛,等. 珊瑚礁区海底地下水排泄的环境效应及其珊瑚记录研究进展[J]. 海洋学报,2020,42(11):1–11 doi: 10.3969/j.issn.0253-4193.2020.11.001
Jiang Wei,Yang Haodan,Wu Xingyuan, et al. Research progress of environmental influence and coral record of submarine groundwater discharge in coral reefs[J]. Haiyang Xuebao,2020, 42(11):1–11 doi: 10.3969/j.issn.0253-4193.2020.11.001
Citation: Jiang Wei,Yang Haodan,Wu Xingyuan, et al. Research progress of environmental influence and coral record of submarine groundwater discharge in coral reefs[J]. Haiyang Xuebao,2020, 42(11):1–11 doi: 10.3969/j.issn.0253-4193.2020.11.001

珊瑚礁区海底地下水排泄的环境效应及其珊瑚记录研究进展

doi: 10.3969/j.issn.0253-4193.2020.11.001
基金项目: 国家自然科学基金项目(41976059,41603091,91428203);广西自然科学基金项目(2019GXNSFAA185022)。
详细信息
    作者简介:

    姜伟(1989-),男,河北省昌黎县人,博士,副教授,主要从事珊瑚礁地质与全球变化研究。E-mail:jianwe@gxu.edu.cn

    通讯作者:

    余克服(1969-),男,湖北省公安县人,博士,教授,主要从事南海珊瑚礁地质、生态与环境研究。E-mail:kefuyu@scsio.ac.cn

  • 中图分类号: P76;P736

Research progress of environmental influence and coral record of submarine groundwater discharge in coral reefs

  • 摘要: 海底地下水排泄(SGD)是近岸海洋化学和生态系统演化的重要驱动因素,其携带的大量物质对珊瑚礁发育和退化具有非常重要的影响。本文综述了珊瑚礁区的SGD特征及其对珊瑚礁发育和退化的潜在生态环境效应,SGD的珊瑚替代指标以及全球各海域SGD的高分辨率珊瑚记录研究进展,并以南海北部为例探讨珊瑚礁退化的主导因素及SGD的潜在影响。研究发现,目前珊瑚礁区,尤其是岸礁区长时间序列的SGD动态变化记录的研究极为薄弱;利用珊瑚骨骼的地球化学指标来重建局部海域的SGD通量的动态历史变化具有较强的可操作性;虽然SGD极有可能是以南海北部为代表的珊瑚礁区珊瑚礁退化的重要因素,但目前无论是政府机构还是公众对SGD的关注和重视相当有限。未来的研究应该聚焦于珊瑚礁区SGD及其携带物质通量的高分辨率珊瑚记录,进而探讨SGD对珊瑚礁发育和退化影响的关键过程与机制,并提出科学合理的应对建议。
  • 图  1  珊瑚礁区SGD研究文献分布(关键词:“submarine groundwater discharge”和“coral reef”,统计于2019 年10月30日)

    Fig.  1  The record of published articles about SGD in coral reefs (key words: “submarine groundwater discharge” and “coral reef”, according to statistics obtained on October 30th, 2019)

    图  2  珊瑚礁区SGD示意图(以火山岛屿为例)

    Fig.  2  Schematic diagram of SGD in coral reefs (a case of volcanic island)

    图  3  南海北部三亚海域珊瑚稀土元素(REE)与钙(Ca)比值和控制SGD的降雨量相关关系(a,数据(3年滑动平均)来源于文献[26]); 加勒比海尤卡坦半岛海域珊瑚钡(Ba)与Ca比值和控制SGD的降雨量相关关系(b,数据来源于文献[24])

    Fig.  3  The correlation between coral REE/Ca and SGD-associatived precipitation near Sanya in the northern South China Sea (a, data (3-year running average) from reference [26]); the correlation between coral Ba/Ca and SGD-associatived precipitation near Yucatan Peninsula in the Caribbean (b, data from reference [24])

    图  4  基于珊瑚稀土元素重建的南海北部海南岛三亚海域SGD通量年际变化历史(a,XL1为珊瑚代号,数据来源于文献[26]); 南太平洋拉罗汤加岛珊瑚骨骼有机质中δ15N记录的SGD氮输入变化历史(b,RO1和RL1分别为珊瑚代号,两个黑色箭头分别代表两次农业繁荣时期的开端,青色背景代表δ15N高值时期,数据来源于文献[88])

    Fig.  4  The reconstructed annual variations of SGD flux near Sanya of Hainan Island in the northern South China Sea based on coral REE (a, XL1: coral label, data from reference [26]); the input record of N based on δ15N in coral skeleton organic material in the Rarotonga, South Pacific (b, RO1 and RL1: coral label. The black arrows show the start of two agricultural booms. The cyan background represents the elevated period of δ15N, data from reference [88])

  • [1] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5

    Yu Kefu. Coral reefs in the South China Sea: Their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
    [2] Spalding M, Burke L, Wood S A, et al. Mapping the global value and distribution of coral reef tourism[J]. Marine Policy, 2017, 82: 104−113. doi: 10.1016/j.marpol.2017.05.014
    [3] Moberg F, Folke C. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 1999, 29(2): 215−233. doi: 10.1016/S0921-8009(99)00009-9
    [4] Ban S S, Graham N A, Connolly S R. Evidence for multiple stressor interactions and effects on coral reefs[J]. Global Change Biology, 2014, 20(3): 681−697. doi: 10.1111/gcb.12453
    [5] Lough J M. 10th Anniversary Review: a changing climate for coral reefs[J]. Journal of Environmental Monitoring, 2008, 10(1): 21−29. doi: 10.1039/B714627M
    [6] Carpenter K E, Abrar M, Aeby G, et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts[J]. Science, 2008, 321(5888): 560−563. doi: 10.1126/science.1159196
    [7] Cinner J E, Huchery C, MacNeil M A, et al. Bright spots among the world’s coral reefs[J]. Nature, 2016, 535(7612): 416−419. doi: 10.1038/nature18607
    [8] Goatley C H R, Bonaldo R M, Fox R J, et al. Sediments and herbivory as sensitive indicators of coral reef degradation[J]. Ecology and Society, 2016, 21(1): 29. doi: 10.5751/ES-08334-210129
    [9] Bruno J F, Valdivia A. Coral reef degradation is not correlated with local human population density[J]. Scientific Reports, 2016, 6: 29778. doi: 10.1038/srep29778
    [10] 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059−2069. doi: 10.3321/j.issn:1000-0933.2007.05.047

    Li Shu, Yu Kefu. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059−2069. doi: 10.3321/j.issn:1000-0933.2007.05.047
    [11] 施祺, 赵美霞, 黄玲英, 等. 三亚鹿回头岸礁区人类活动及其对珊瑚礁的影响[J]. 热带地理, 2010, 30(5): 486−490, 509. doi: 10.3969/j.issn.1001-5221.2010.05.006

    Shi Qi, Zhao Meixia, Huang Lingying, et al. Human activities and impacts on coral reef at the Luhuitou fringing reef, Sanya[J]. Tropical Geography, 2010, 30(5): 486−490, 509. doi: 10.3969/j.issn.1001-5221.2010.05.006
    [12] 贾国东, 黄国伦. 海底地下水排放: 重要的海岸带陆海相互作用过程[J]. 地学前缘, 2005, 12(S1): 29−35.

    Jia Guodong, Huang Guolun. Submarine groundwater discharge: An important land-ocean interaction in the coastal zone[J]. Earth Science Frontiers, 2005, 12(S1): 29−35.
    [13] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636−646.

    Li Hailong, Wang Xuejing. Submarine groundwater discharge: a review[J]. Advances in Earth Science, 2015, 30(6): 636−646.
    [14] Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59−88. doi: 10.1146/annurev-marine-120308-081019
    [15] Fabricius K E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis[J]. Marine Pollution Bulletin, 2005, 50(2): 125−146. doi: 10.1016/j.marpolbul.2004.11.028
    [16] Prouty N G, Swarzenski P W, Fackrell J K, et al. Groundwater-derived nutrient and trace element transport to a nearshore Kona coral ecosystem: Experimental mixing model results[J]. Journal of Hydrology: Regional Studies, 2017, 11: 166−177. doi: 10.1016/j.ejrh.2015.12.058
    [17] Wang Guizhi, Jing Wenping, Wang Shuling, et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science & Technology, 2014, 48(22): 13069−13075.
    [18] Wang Guizhi, Wang Shuling, Wang Zhangyong, et al. Tidal variability of nutrients in a coastal coral reef system influenced by groundwater[J]. Biogeosciences, 2018, 15(4): 997−1009. doi: 10.5194/bg-15-997-2018
    [19] Nelson C E, Donahue M J, Dulaiova H, et al. Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems[J]. Marine Chemistry, 2015, 177: 232−243. doi: 10.1016/j.marchem.2015.06.026
    [20] Cyronak T, Santos I R, Erler D V, et al. Drivers of pCO2 variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge[J]. Global Biogeochemical Cycles, 2014, 28(4): 398−414. doi: 10.1002/2013GB004598
    [21] Street J H, Knee K L, Grossman E E, et al. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai'i[J]. Marine Chemistry, 2008, 109(3/4): 355−376.
    [22] Garrison G H, Glenn C R, McMurtry G M. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawai'i[J]. Limnology and Oceanography, 2003, 48(2): 920−928. doi: 10.4319/lo.2003.48.2.0920
    [23] Richardson C M, Dulai H, Popp B N, et al. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs[J]. Limnology and Oceanography, 2007, 62(S1): S348−S363.
    [24] Horta-Puga G, Carriquiry J D. Coral Ba/Ca molar ratios as a proxy of precipitation in the northern Yucatan Peninsula, Mexico[J]. Applied Geochemistry, 2012, 27(8): 1579−1586. doi: 10.1016/j.apgeochem.2012.05.008
    [25] Prouty N G, Jupiter S D, Field M E, et al. Coral proxy record of decadal-scale reduction in base flow from Moloka'i, Hawaii[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12): 1−18.
    [26] Jiang W, Yu K F, Song Y X, et al. Coral geochemical record of submarine groundwater discharge back to 1870 in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507: 30−38. doi: 10.1016/j.palaeo.2018.05.045
    [27] Yu Kefu, Zhao Jianxin, Shi Qi, et al. U-series dating of dead Porites corals in the South China sea: Evidence for episodic coral mortality over the past two centuries[J]. Quaternary Geochronology, 2006, 1(2): 129−141. doi: 10.1016/j.quageo.2006.06.005
    [28] Xu Shendong, Yu Kefu, Tao Shichen, et al. Evidence for the thermal bleaching of Porites corals from 4.0 ka B. P. in the Northern South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(1): 79−94. doi: 10.1002/2017JG004091
    [29] Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30 000 years[J]. Nature Geoscience, 2018, 11(6): 426−432. doi: 10.1038/s41561-018-0127-3
    [30] Kamenos N A, Hennige S J. Reconstructing four centuries of temperature-induced coral bleaching on the great barrier reef[J]. Frontiers in Marine Science, 2018, 5: 283. doi: 10.3389/fmars.2018.00283
    [31] 朱传华. 关于我省珊瑚礁生态系统保护与管理的建议[EB/OL]. (2018–04–08) [2019–10–30]. http://www.hainan.gov.cn/zxtadata-7894.html, 2018.

    Zhu Chuanhua. Suggestions on the protection and management of coral reef ecosystem in Hainan Province[EB/OL]. (2018–04–08) [2019–10–30]. http://www.hainan.gov.cn/zxtadata-7894.html, 2018.
    [32] Halfar J, Godinez-Orta L, Riegl B, et al. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions[J]. Coral Reefs, 2005, 24(4): 582−592. doi: 10.1007/s00338-005-0029-x
    [33] Clark T R, Chen Xuefei, Leonard N D, et al. Episodic coral growth in China’s subtropical coral communities linked to broad-scale climatic change[J]. Geology, 2018, 47(1): 79−82.
    [34] 陈天然, 余克服, 施祺, 等. 大亚湾石珊瑚群落近25年的变化及其对2008年极端低温事件的响应[J]. 科学通报, 2009, 54(12): 2107−2117.

    Chen Tianran, Yu Kefu, Shi Qi, et al. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event[J]. Chinese Science Bulletin, 2009, 54(12): 2107−2117.
    [35] Zhao Meixia, Yu Kefu, Zhang Qiaomin, et al. Long-term decline of a fringing coral reef in the Northern South China Sea[J]. Journal of Coastal Research, 2012, 28(5): 1088−1099. doi: 10.2112/JCOASTRES-D-10-00172.1
    [36] 柯东胜, 彭晓娟, 吴玲铃, 等. 大亚湾典型生态系统状况调查与分析[J]. 海洋环境科学, 2009, 28(4): 421−425. doi: 10.3969/j.issn.1007-6336.2009.04.016

    Ke Dongsheng, Peng Xiaojuan, Wu Lingling, et al. Survey and analysis of typical ecosystem status in Daya Bay[J]. Marine Environmental Science, 2009, 28(4): 421−425. doi: 10.3969/j.issn.1007-6336.2009.04.016
    [37] 梁文, 黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究, 2002, 15(6): 5−7, 16. doi: 10.3321/j.issn:1001-6929.2002.06.002

    Liang Wen, Li Guangzhao. Preliminary study on characteristics of coral reef distribution and environmental protection in Weizhou Island[J]. Research of Environmental Sciences, 2002, 15(6): 5−7, 16. doi: 10.3321/j.issn:1001-6929.2002.06.002
    [38] 陈天然, 郑兆勇, 莫少华, 等. 涠洲岛滨珊瑚中的生物侵蚀及其环境指示意义[J]. 科学通报, 2013, 58(17): 1574−1582. doi: 10.1360/972011-2531

    Chen Tianran, Zheng Zhaoyong, Mo Shaohua, et al. Bioerosion in Porites corals at Weizhou Island and its environmental significance[J]. Chinese Science Bulletin, 2013, 58(17): 1574−1582. doi: 10.1360/972011-2531
    [39] Hughes T, Szmant A M, Steneck R, et al. Algal blooms on coral reefs: what are the causes?[J]. Limnology and Oceanography, 1999, 44(6): 1583−1586. doi: 10.4319/lo.1999.44.6.1583
    [40] Szmant A M. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline?[J]. Estuaries, 2002, 25(4): 743−766. doi: 10.1007/BF02804903
    [41] 国家海洋局南海分局. 2016年南海区海洋环境状况公报[EB/OL]. (2017-06-20) [2019-10-30]. http://scs.mnr.gov.cn/scsb/gbytj/201706/8f92b735703b4dac816c571ed3d08a24.shtml.

    South China Sea Branch, State Oceanic Administration. The bulletin of marine environment state in South China Sea [EB/OL]. (2017-06-20) [2019-10-30]. http://scs.mnr.gov.cn/scsb/gbytj/201706/8f92b735703b4dac816c571ed3d08a24.shtml.
    [42] Mosley L M, Aalbersberg W G L. Nutrient levels in sea and river water along the ‘Coral Coast’ of Viti Levu, Fiji[J]. Journal of Natural Applied Sciences, 2003, 21: 35−40.
    [43] Reopanichkul P, Carter R W, Worachananant S, et al. Wastewater discharge degrades coastal waters and reef communities in southern Thailand[J]. Marine Environmental Research, 2010, 69(5): 287−296. doi: 10.1016/j.marenvres.2009.11.011
    [44] Phongsuwan N, Chankong A, Yamarunpatthana C, et al. Status and changing patterns on coral reefs in Thailand during the last two decades[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 96: 19−24.
    [45] Wear S L, Thurber R V. Sewage pollution: mitigation is key for coral reef stewardship[J]. Annals of the New York Academy of Sciences, 2016, 1355(1): 15−30.
    [46] Dadhich A P, Nadaoka K. Analysis of Terrestrial discharge from agricultural watersheds and its impact on nearshore and offshore reefs in fiji[J]. Journal of Coastal Research, 2012, 28(5): 1225−1235. doi: 10.2112/JCOASTRES-D-11-00149.1
    [47] Cyronak T, Schulz K G, Santos I R, et al. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks[J]. Geophysical Research Letters, 2014, 41(15): 5538−5546.
    [48] Cyronak T, Santos I R, Erler D V, et al. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands)[J]. Biogeosciences, 2013, 10(4): 2467−2480.
    [49] Boehm A B, Paytan A, Shellenbarger G G, et al. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone[J]. Continental Shelf Research, 2006, 26(2): 269−282.
    [50] Slomp C P, Van Cappellen P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact[J]. Journal of Hydrology, 2004, 295(1/4): 64−86.
    [51] Santos I R, Niencheski F, Burnett W, et al. Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil[J]. Journal of Hydrology, 2008, 353(3/4): 275−293.
    [52] Wang Guizhi, Wang Shuiling, Wang Zhangyong, et al. Significance of submarine groundwater discharge in nutrient budgets in tropical Sanya Bay, China[J]. Sustainability, 2018, 10(2): 380.
    [53] Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3−33. doi: 10.1023/B:BIOG.0000006066.21240.53
    [54] Moosdorf N, Stieglitz T, Waska H, et al. Submarine groundwater discharge from tropical islands: a review[J]. Grundwasser, 2015, 20(1): 53−67. doi: 10.1007/s00767-014-0275-3
    [55] Reading M J, Santos I R, Maher D T, et al. Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations[J]. Estuarine, Coastal and Shelf Science, 2017, 194: 66−76. doi: 10.1016/j.ecss.2017.05.017
    [56] Santos I R, De Weys J, Tait D R, et al. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios[J]. Estuaries and Coasts, 2013, 36(1): 56−73. doi: 10.1007/s12237-012-9561-4
    [57] Tait D R, Maher D T, Sanders C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200: 295−309. doi: 10.1016/j.gca.2016.12.024
    [58] Moore W S, Sarmiento J L, Key R M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1(5): 309−311. doi: 10.1038/ngeo183
    [59] Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575): 612−614. doi: 10.1038/380612a0
    [60] Kwon E Y, Kim G, Primeau F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014, 41(23): 8438−8444. doi: 10.1002/2014GL061574
    [61] Richardson C M, Dulai H, Popp B N, et al. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs[J]. Limnology and Oceanography, 2017, 62(S1): S348−S363. doi: 10.1002/lno.10654
    [62] Drupp P, De Carlo E H, Mackenzie F T, et al. Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii[J]. Aquatic Geochemistry, 2011, 17(4/5): 473−498.
    [63] Dimova N T, Swarzenski P W, Dulaiova H, et al. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seatwater interface in two Hawaiian groundwater systems[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02012.
    [64] Lubarsky K A, Silbiger N J, Donahue M J. Effects of submarine groundwater discharge on coral accretion and bioerosion on two shallow reef flats[J]. Limnology and Oceanography, 2018, 63(4): 1660−1676. doi: 10.1002/lno.10799
    [65] Boehm A B, Shellenbarger G G, Paytan A. Groundwater discharge:  potential association with fecal indicator bacteria in the surf zone[J]. Environmental Science & Technology, 2004, 38(13): 3558−3566.
    [66] Lee Y W, Kim G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 309−317.
    [67] Lee Y W, Hwang D W, Kim G, et al. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea[J]. Science of the Total Environment, 2009, 407(9): 3181−3188. doi: 10.1016/j.scitotenv.2008.04.013
    [68] Tse K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008, 111(3/4): 160−170.
    [69] Hwang D W, Lee Y W, Kim G. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea[J]. Limnology and Oceanography, 2005, 50(5): 1393−1403. doi: 10.4319/lo.2005.50.5.1393
    [70] Rocha C, Wilson J, Scholten J, et al. Retention and fate of groundwater-borne nitrogen in a coastal bay (Kinvara Bay, Western Ireland) during summer[J]. Biogeochemistry, 2015, 125(2): 275−299. doi: 10.1007/s10533-015-0116-1
    [71] Le Grand H M, Fabricius K E. Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef[J]. Coral Reefs, 2011, 30(1): 97−107. doi: 10.1007/s00338-010-0670-x
    [72] Lapointe B E. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida[J]. Limnology and Oceanography, 1997, 42(5part2): 1119−1131. doi: 10.4319/lo.1997.42.5_part_2.1119
    [73] Santos I R, Glud R N, Maher D, et al. Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef[J]. Geophysical Research Letters, 2011, 38(3): L03604.
    [74] DeCarlo T M, Cohen A L, Barkley H C, et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients[J]. Geology, 2015, 43(1): 7−10. doi: 10.1130/G36147.1
    [75] Lee J, Kim G. Dependence of coastal water pH increases on submarine groundwater discharge off a volcanic island[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 15−21. doi: 10.1016/j.ecss.2015.05.037
    [76] Silbiger N J, Nelson C E, Remple K, et al. Nutrient pollution disrupts key ecosystem functions on coral reefs[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1880): 20172718. doi: 10.1098/rspb.2017.2718
    [77] Amato D W, Bishop J M, Glenn C R, et al. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui[J]. PLoS One, 2016, 11(11): e0165825. doi: 10.1371/journal.pone.0165825
    [78] Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification[J]. Science, 2007, 318(5857): 1737−1742. doi: 10.1126/science.1152509
    [79] Oberle F K J, Storlazzi C D, Cheriton O M, et al. Physicochemical controls on zones of higher coral stress where black band disease occurs at Mākua reef, Kaua'i, Hawai'i[J]. Frontiers in Marine Science, 2019, 6: 552. doi: 10.3389/fmars.2019.00552
    [80] Cardenas M B, Zamora P B, Siringan F P, et al. Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222Rn, and salinity measurements[J]. Geophysical Research Letters, 2010, 37(16): L16401.
    [81] Blanco A C, Watanabe A, Nadaoka K, et al. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef[J]. Marine Pollution Bulletin, 2011, 62(4): 770−785. doi: 10.1016/j.marpolbul.2011.01.005
    [82] Paytan A, Shellenbarger G G, Street J H, et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems[J]. Limnology and Oceanography, 2006, 51(1): 343−348. doi: 10.4319/lo.2006.51.1.0343
    [83] Stieglitz T. Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia[J]. Marine Pollution Bulletin, 2005, 51(1/4): 51−59.
    [84] McMahon A, Santos I R. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7218−7236. doi: 10.1002/2017JC012929
    [85] Lapointe B E, Langton R, Bedford B J, et al. Land-based nutrient enrichment of the Buccoo Reef Complex and fringing coral reefs of Tobago, West Indies[J]. Marine Pollution Bulletin, 2010, 60(3): 334−343. doi: 10.1016/j.marpolbul.2009.10.020
    [86] Crook E D, Cohen A L, Rebolledo-Vieyra M, et al. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11044−11049. doi: 10.1073/pnas.1301589110
    [87] Crook E D, Potts D, Rebolledo-Vieyra M, et al. Calcifying coral abundance near low-pH springs: implications for future ocean acidification[J]. Coral Reefs, 2012, 31(1): 239−245. doi: 10.1007/s00338-011-0839-y
    [88] Erler D V, Shepherd B O, Linsley B K, et al. Coral skeletons record increasing agriculture-related groundwater nitrogen inputs to a south pacific reef over the past century[J]. Geophysical Research Letters, 2018, 45(16): 8370−8378. doi: 10.1029/2018GL078656
    [89] Gonneea M E, Mulligan A E, Charette M A. Seasonal cycles in radium and barium within a subterranean estuary: Implications for groundwater derived chemical fluxes to surface waters[J]. Geochimica et Cosmochimica Acta, 2013, 119: 164−177. doi: 10.1016/j.gca.2013.05.034
    [90] Shaw T J, Moore W S, Kloepfer J, et al. The flux of barium to the coastal waters of the southeastern USA: the importance of submarine groundwater discharge[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3047−3054. doi: 10.1016/S0016-7037(98)00218-X
    [91] Santos I R, Burnett W C, Misra S, et al. Uranium and barium cycling in a salt wedge subterranean estuary: The influence of tidal pumping[J]. Chemical Geology, 2011, 287(1/2): 114−123.
    [92] Gonneea M E, Charette M A, Liu Qian, et al. Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico)[J]. Geochimica et Cosmochimica Acta, 2014, 132: 31−49. doi: 10.1016/j.gca.2014.01.037
    [93] Kim I, Kim G. Large fluxes of rare earth elements through submarine groundwater discharge (SGD) from a volcanic island, Jeju, Korea[J]. Marine Chemistry, 2011, 127(1/4): 12−19.
    [94] Kim I, Kim G. Submarine groundwater discharge as a main source of rare earth elements in coastal waters[J]. Marine Chemistry, 2014, 16: 11−17.
    [95] Johannesson K H, Burdige D J. Balancing the global oceanic neodymium budget: Evaluating the role of groundwater[J]. Earth and Planetary Science Letters, 2007, 253(1/2): 129−142.
    [96] Johannesson K H, Palmore C D, Fackrell J, et al. Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii[J]. Geochimica et Cosmochimica Acta, 2017, 198: 229−258. doi: 10.1016/j.gca.2016.11.009
    [97] Chevis D A, Johannesson K H, Burdige D J, et al. Submarine groundwater discharge of rare earth elements to a tidally-mixed estuary in Southern Rhode Island[J]. Chemical Geology, 2015, 397: 128−142. doi: 10.1016/j.chemgeo.2015.01.013
    [98] Chevis D A, Johannesson K H, Burdige D J, et al. Rare earth element cycling in a sandy subterranean estuary in Florida, USA[J]. Marine Chemistry, 2015, 176: 34−50. doi: 10.1016/j.marchem.2015.07.003
    [99] Prouty N G, Field M E, Stock J D, et al. Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka'i, Hawai'i over the last several decades[J]. Marine Pollution Bulletin, 2010, 60(10): 1822−1835. doi: 10.1016/j.marpolbul.2010.05.024
    [100] Carriquiry J D, Horta-Puga G. The Ba/Ca record of corals from the Southern Gulf of Mexico: Contributions from land-use changes, fluvial discharge and oil-drilling muds[J]. Marine Pollution Bulletin, 2010, 60(9): 1625−1630. doi: 10.1016/j.marpolbul.2010.06.007
    [101] Nguyen A D, Zhao J X, Feng Y X, et al. Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: evidence from a Porites lutea geochemical record[J]. Coral Reefs, 2013, 32(1): 181−193.
    [102] Liu Yi, Peng Zicheng, Wei Gangjian, et al. Interannual variation of rare earth element abundances in corals from northern coast of the South China Sea and its relation with sea-level change and human activities[J]. Marine Environmental Research, 2011, 71(1): 62−69. doi: 10.1016/j.marenvres.2010.10.003
    [103] Song Yinxian, Yu Kefu, Zhao Jianxin, et al. Past 140-year environmental record in the northern South China Sea: evidence from coral skeletal trace metal variations[J]. Environmental Pollution, 2014, 185: 97−106.
    [104] Jiang Wei, Yu Kefu, Song Yinxian, et al. Coral trace metal of natural and anthropogenic influences in the northern South China Sea[J]. Science of the Total Environment, 2017, 607−608: 195−203. doi: 10.1016/j.scitotenv.2017.06.105
    [105] Fallon S J, White J C, McCulloch M T. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45−62.
    [106] McCulloch M, Fallon S, Wyndham T, et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement[J]. Nature, 2003, 421(6924): 727−730. doi: 10.1038/nature01361
    [107] Fleitmann D, Dunbar R B, McCulloch M, et al. East African soil erosion recorded in a 300 year old coral colony from Kenya[J]. Geophysical Research Letters, 2007, 34(4): L04401.
    [108] Santos I R, Erler D, Tait D, et al. Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12010.
    [109] Cable J E, Burnett W C, Chanton J P, et al. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 591−604.
    [110] 林武辉, 余克服, 王英辉, 等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018, 63(21): 2173−2183.

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018, 63(21): 2173−2183.
    [111] 林武辉, 余克服, 王英辉, 等. 罕见的地表低辐射水平区域: 珊瑚礁区[J]. 辐射防护, 2018, 38(4): 287−292.

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Unusual low radiation area on the surface of the earth: coral reefs[J]. Radiation Protection, 2018, 38(4): 287−292.
    [112] 林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030

    Lin Wuhui, Yu Kefu, Deng Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030
    [113] Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43−53.
    [114] Erler D V, Wang Xingchen, Sigman D M, et al. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon[J]. Earth and Planetary Science Letters, 2016, 434: 161−170.
    [115] Ren Haojia, Chen Yichi, Wang X T, et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef[J]. Science, 2017, 356(6339): 749−752.
    [116] Wang X T, Sigman D M, Cohen A L, et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals[J]. Earth and Planetary Science Letters, 2016, 441: 125−132. doi: 10.1016/j.jpgl.2016.02.032
    [117] Lowe R J, Falter J L. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 2015, 7: 43−66. doi: 10.1146/annurev-marine-010814-015834
    [118] Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215−4232. doi: 10.1016/j.watres.2008.07.020
    [119] Montoya J P, Carpenter E J, Capone D G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic[J]. Limnology and Oceanography, 2002, 47(6): 1617−1628. doi: 10.4319/lo.2002.47.6.1617
    [120] Yoshikawa C, Makabe A, Shiozaki T, et al. Nitrogen isotope ratios of nitrate and N* anomalies in the subtropical South Pacific[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1439−1448.
    [121] Prouty N G, Cohen A, Yates K K, et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution[J]. Journal of Geophysical Research: Oceans, 2017, 122(12): 9319−9331. doi: 10.1002/2017JC013264
    [122] Mutchler T, Dunton K H, Townsend-Small A, et al. Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico[J]. Estuarine, Coastal and Shelf Science, 2007, 74(3): 449−457.
    [123] Baker D M, Rodríguez-Martínez R E, Fogel M L. Tourism’s nitrogen footprint on a Mesoamerican coral reef[J]. Coral Reefs, 2013, 32(3): 691−699. doi: 10.1007/s00338-013-1040-2
    [124] Baker D M, Jordán-Dahlgren E, Maldonado M A, et al. Sea fan corals provide a stable isotope baseline for assessing sewage pollution in the Mexican Caribbean[J]. Limnology and Oceanography, 2010, 55(5): 2139−2149. doi: 10.4319/lo.2010.55.5.2139
    [125] Johnson A G, Glenn C R, Burnett W C, et al. Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean[J]. Geophysical Research Letters, 2008, 35(15): L15606.
    [126] Guo Jing, Yu Kefu, Wang Yinghui, et al. Nutrient distribution in coral reef degraded areas within Sanya Bay, South China Sea[J]. Journal of Coastal Research, 2017, 33(5): 1148−1160.
    [127] Saha N, Rodriguez-Ramirez A, Nguyen A D, et al. Seasonal to decadal scale influence of environmental drivers on Ba/Ca and Y/Ca in coral aragonite from the southern Great Barrier Reef[J]. Science of the Total Environment, 2018, 639: 1099−1109.
    [128] Mallela J, Lewis S E, Croke B. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef[J]. PLoS One, 2013, 8(9): e75663.
    [129] Brodie J E, Lewis S E, Collier C J, et al. Setting ecologically relevant targets for river pollutant loads to meet marine water quality requirements for the Great Barrier Reef, Australia: A preliminary methodology and analysis[J]. Ocean & Coastal Management, 2017, 143: 136−147.
    [130] 生态环境部. 2017中国近岸海域生态环境质量公报[EB/OL]. (2018–08–08) [2019–10–30]. http://www.h2o-china.com/news/278915.html.

    Ministry of Ecological and Environment. Bulletin of ecological and environmental quality in china’s coastal waters in 2017[EB/OL]. (2018–08–08) [2019–10–30]. http://www.h2o-china.com/news/278915.html.
    [131] 国家海洋局. 2016年中国海洋环境状况公报[EB/OL]. (2017–03–22) [2019–10–30]. http://gc.mnr.gov.cn/201806/t20180619_1797645.html.

    State Oceanic Administration. The state of marine environment bulletin of China in 2016[EB/OL]. (2017–03–22) [2019–10–30]. http://gc.mnr.gov.cn/201806/t20180619_1797645.html.
    [132] Wiegner T N, Mokiao-Lee A U, Johnson E E. Identifying nitrogen sources to thermal tide pools in Kapoho, Hawai'i, U. S. A, using a multi-stable isotope approach[J]. Marine Pollution Bulletin, 2016, 103(1/2): 63−71.
    [133] Knee K L, Paytan A. Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean[M]//Wolanski E, McLusky D. Treatise on Estuarine and Coastal Science. Waltham: Academic Press, 2011: 205−233.
    [134] Andersson A J, Gledhill D. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification[J]. Annual Review of Marine Science, 2013, 5: 321−348.
    [135] Pandolfi J M, Connolly S R, Marshall D J, et al. Projecting coral reef futures under global warming and ocean acidification[J]. Science, 2011, 333(6041): 418−422.
    [136] Silbiger N J, Guadayol Ò, Thomas F I M, et al. A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability[J]. PLoS One, 2016, 11(4): e0153058.
    [137] Wu Zijun, Zhou Huaiyang, Zhang Shuai, et al. Using 222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea[J]. Marine Pollution Bulletin, 2013, 73(1): 183−191. doi: 10.1016/j.marpolbul.2013.05.024
  • 加载中
图(4)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  150
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-31
  • 修回日期:  2020-02-06
  • 网络出版日期:  2020-12-03
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回