Experimental study on mooring tension of a moored rectangular cylinder under freak wave
-
摘要: 基于物理模型试验,探究畸形波和不规则波作用下浮体系泊张力差异问题。讨论相对波高、相对周期和畸形波参数α1对系泊张力的影响。结果显示:畸形波参数α1和浮体系泊张力显著相关。在α1=2.0~2.83范围内,畸形波作用下迎浪侧系泊张力最大值可达不规则波作用的1.9倍。在相对波高Hs/d=0.032~0.097范围内,畸形波作用下迎浪侧系泊张力最大值显著大于不规则波的作用结果,但畸形波和不规则波对应的1/3值及平均值几乎一致。就相对周期影响而言,迎浪侧系泊张力最大差别出现在谱峰周期Tp<T0p范围内。频域方面采用小波分析方法讨论畸形波和不规则波作用下浮体系泊张力时频谱特征,两种波浪作用下系泊张力时频特征有显著差别。Abstract: Based on extensive experiments on the mooring tension of a rectangular cylinder, the present investigation compares the mooring tension of a floating rectangular cylinder under freak and random waves and quantifies the difference through experimental measurements. The effects of the relative wave height, relative period and freak wave parameter α1 on the mooring tension are investigated. The results show that, the freak wave parameter α1 has significant effect on the mooring tension of the floater. With α1=2.0~2.83, the maximum mooring tension under freak wave were 1.9 times larger than that under random wave. With Hs/d=0.032~0.097, the maximum mooring tension under freak wave are significantly larger than those under irregular waves, but the 1/3 large value and average value under freak and irregular waves are almost the same. For the effect of the relative period, the critical variation of mooring tension occur at period within Tp<T0p. The time-frequency spectra of the mooring tension under freak and random waves are calculated by wavelet analysis to investigate the time-frequency structure characteristics and variation. The time-frequency characteristics of mooring tension are significantly different from those of random wave.
-
Key words:
- freak wave /
- moored rectangular cylinder /
- mooring tension /
- wavelet analysis
-
图 6 系泊张力统计特征值比值随相对波高变化(Hs/d=0.032~0.097,Tp=1.4 s)
Fmax(f)/Fmax(i)、F1/10(f)/F1/10(i)、F1/3(f)/F1/3(i)和Faverage(f)/Faverage(i)分别表示畸形波与不规则波作用时,浮体迎浪侧系泊张力最大值、1/10大值、1/3大值及平均值之比
Fig. 6 The variation of statistical characteristics of mooring tension versus the relative wave height (Hs/d=0.032~0.097, Tp=1.4 s)
Fmax(f)/Fmax(i), F1/10(f)/F1/10(i), F1/3(f)/F1/3(i), and Faverage(f)/Faverage(i) are the ratio of the maximum value, 1/10 value, 1/3 value and the average value of the mooring tension under freak and random waves
图 8 迎浪侧系泊张力最大值比值随相对周期变化(Hs=8 cm,Tp/T0p=0.57~1.55)
Ff /Fi表示畸形波与不规则波作用时,浮体迎浪侧系泊张力最大值比值
Fig. 8 The variation of statistical characteristics of mooring tension versus the relative period (Hs=8 cm, Tp/T0p=0.57~1.55)
Ff /Fi represents the ratio of the maximum mooring tension on the windward side of the floating body under the freak and random waves
表 1 浮体模型几何尺寸及水动力参数
Tab. 1 Mechanical parameters of the rectangular cylinder
参数 原型值 模型值 边长/m 17.5 0.50 高度/m 22 0.62 边角圆弧半径/m 2.3 0.066 吃水深度/m 12.0 0.34 重量/t 3130 0.073 重心高度/m 7.0 0.20 浮心高度/m 6.0 0.17 横/纵稳心半径/m 2.15 0.061 3 横/纵稳性高度/m 1.8 0.051 3 纵荡自振周期T0s/s 59.0 10.0 垂荡自振周期T0h/s 8.3 1.4 纵摇自振周期T0p/s 11.8 2.0 表 2 试验组别及相关参数
Tab. 2 Summary of test groups and correlation parameters
试验序列 畸形波及不规则波 畸形波 备注 有效波高/cm 谱峰周期/s 相对波高 相对周期 畸形波参数α1 畸形波参数α2-α4 Tp/T0s Tp/T0h Tp/T0p I:有效波高变化序列,谱峰周期固定 4.54 1.40~1.45 0.032 0.14~0.15 1.00~1.04 0.70~0.73 2.10<α1<2.20 1.72<α2<2.10
1.55<α3<2.10
0.53<α4<0.62考察波高影响 6.51 0.047 8.52 0.061 10.54 0.075 11.80 0.084 13.62 0.097 II:谱峰周期变化序列, 有效波高固定 7.86~8.15 1.14 0.056~0.058 0.11 0.81 0.57 2.00<α1<2.20 1.40<α2<2.14
1.40<α3<2.37
0.51<α4<0.66考察周期影响 1.26 0.13 0.90 0.63 1.56 0.16 1.11 0.78 1.83 0.18 1.31 0.92 2.01 0.20 1.44 1.01 2.16 0.22 1.54 1.08 2.87 0.29 2.05 1.44 3.10 0.31 2.21 1.55 III:畸形波参数α1变化,谱峰周期和
有效波高固定7.77~8.11 1.56~1.60 0.056~0.058 0.16~0.16 1.11~1.14 0.78~0.80 1.91 考察畸形波参数αn的影响 2.07 1.30<α2<1.52 2.32 1.50<α3<1.94 2.60 0.51<α4<0.56 2.83 试验序列 规则波 波高/cm 周期/s 相对波高 相对周期 备注 Tp/T0s Tp/T0h Tp/T0p IV:附加规则波
试验序列10.00 1.00 0.07 0.10 0.71 0.50 获取浮式结构物幅值响应算子RAO以及相关的相位响应 1.20 0.12 0.86 0.60 1.40 0.14 1.00 0.70 1.60 0.16 1.14 0.80 1.80 0.18 1.29 0.90 2.00 0.20 1.43 1.00 2.20 0.22 1.57 1.10 2.40 0.24 1.71 1.20 2.60 0.26 1.86 1.30 2.80 0.28 2.00 1.40 3.00 0.30 2.14 1.50 3.20 0.32 2.29 1.60 3.40 0.34 2.43 1.70 -
[1] Slunyaev A, Kharif C, Pelinovsky E, et al. Nonlinear wave focusing on water of finite depth[J]. Physica D: Nonlinear Phenomena, 2002, 173(1/2): 77−96. [2] Clauss G F, Schmittner C E, Henning J. Systematically varied rogue wave sequences for the experimental investigation of extreme structure behavior[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006, 130(2): 1030−1036. [3] Pei Yuguo, Zhang Ningchuan, Zhang Yunqiu. Efficient Generation of Freak Waves in Laboratory[J]. China Ocean Engineering, 2007, 21(3): 515−523. [4] Cui Cheng, Zhang Ningchuan, Yu Yuxiu, et al. Numerical study on the effects of uneven bottom topography on freak waves[J]. Ocean Engineering, 2012, 54: 132−141. doi: 10.1016/j.oceaneng.2012.06.021 [5] El Moctar O, Schellin T E, Jahnke T, et al. Wave load and structural analysis for a jack-up platform in freak waves[J]. Journal of Offshore Mechanics and Arctic Engineering, 2007, 131(2): 623−632. [6] Rudman M, Cleary P W. Rogue wave impact on a tension leg platform: the effect of wave incidence angle and mooring line tension[J]. Ocean Engineering, 2013, 61: 123−138. doi: 10.1016/j.oceaneng.2013.01.006 [7] Zhao Xizeng, Ye Zhouteng, Fu Yingnan, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87: 50−63. doi: 10.1016/j.oceaneng.2014.05.009 [8] Ning Dezhi, Wang Rongquan, Chen Lifen, et al. Extreme wave run-up and pressure on a vertical seawall[J]. Applied Ocean Research, 2017, 67: 188−200. doi: 10.1016/j.apor.2017.07.015 [9] Clauss G F, Schmittner C E, Stutz K. Freak wave impact on semisubmersibles-time-domain analysis of motions and forces[C]// Proceedings 13th International Offshore and Polar Engineering Conference, Honolulu, USA, 2003. Honolulu, USA: International Society of Offshore and Polar Engineers, 2003. [10] Schmittner C E. Rogue wave impact on marine structures[D]. Berlin: Technische Universität Berlin, 2005. [11] 沈玉稿, 杨建民, 李欣. 极限波浪作用下半潜平台运动响应时域数值模拟[J]. 海洋工程, 2013, 31(3): 9−17.Shen Yugao, Yang Jianmin, Li Xin. Numerical investigation on the motion response of semisubmersible platform under extreme waves[J]. The Ocean Engineering, 2013, 31(3): 9−17. [12] Deng Yanfei, Yang Jianmin, Xiao Longfei, et al. An experimental investigation on the motion and dynamic responses of a semisubmersible in freak waves[C]//Proceedings of the 17th National Conference on Ocean Engineering. Beijing: China Ocean Press, 2015: 182−189. [13] Gao Ningbo, Yang Jianmin, Zhao Wenhua, et al. Numerical simulation of deterministic freak wave sequences and wave-structure interaction[J]. Ships and Offshore Structures, 2016, 11(8): 802−817. doi: 10.1080/17445302.2015.1073864 [14] Pan Wenbo, Zhang Ningchuan, Huang Guoxing, et al. Experimental study on motion responses of a moored rectangular cylinder under freak waves (I: Time-domain study)[J]. Ocean Engineering, 2018, 153: 268−281. doi: 10.1016/j.oceaneng.2018.01.084 [15] Chien H, Kao C, Chuang L Z H. On the characteristics of observed coastal freak waves[J]. Coastal Engineering Journal, 2002, 44(4): 301−319. doi: 10.1142/S0578563402000561 [16] Journee J M. Motions of rectangular barges[C]//Proceedings 10th International Conference on Offshore Mechanics and Arctic Engineering. Stavanger, Norway: American Society of Mechanical Engineer, 1991: 641. [17] Osborne A R, Onorato M, Serio M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains[J]. Physics Letters A, 2000, 275(5/6): 386−393. [18] Song Yue, Zhang Ningchuan, Huang Guoxing, et al. Experimental study on motions of tunnel element during immersion standby stage in long wave regime[J]. Ocean Engineering, 2018, 161: 29−46. doi: 10.1016/j.oceaneng.2018.04.089 [19] Pinkster J A. Mean and low frequency wave drifting forces on floating structures[J]. Ocean Engineering, 1979, 6: 593−615. doi: 10.1016/0029-8018(79)90010-6