留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多向不规则波浪的确定性模拟

罗丽 柳淑学 李金宣 王磊

罗丽,柳淑学,李金宣,等. 多向不规则波浪的确定性模拟[J]. 海洋学报,2020,42(9):79–86 doi: 10.3969/j.issn.0253-4193.2020.09.009
引用本文: 罗丽,柳淑学,李金宣,等. 多向不规则波浪的确定性模拟[J]. 海洋学报,2020,42(9):79–86 doi: 10.3969/j.issn.0253-4193.2020.09.009
Luo Li,Liu Shuxue,Li Jinxuan, et al. Deterministic simulation of multidirectional irregular waves[J]. Haiyang Xuebao,2020, 42(9):79–86 doi: 10.3969/j.issn.0253-4193.2020.09.009
Citation: Luo Li,Liu Shuxue,Li Jinxuan, et al. Deterministic simulation of multidirectional irregular waves[J]. Haiyang Xuebao,2020, 42(9):79–86 doi: 10.3969/j.issn.0253-4193.2020.09.009

多向不规则波浪的确定性模拟

doi: 10.3969/j.issn.0253-4193.2020.09.009
基金项目: 国家自然科学基金(51879037,51739010)。
详细信息
    作者简介:

    罗丽(1988-),女,陕西省渭南市人,博士生,从事港口、海岸和近海工程研究。E-mail:luoli881206@163.com

    通讯作者:

    柳淑学(1965-),男,河北省唐县人,研究员。E-mail:liusx@dlut.edu.cn

  • 中图分类号: P731.22

Deterministic simulation of multidirectional irregular waves

  • 摘要: 波浪波动时间过程及波列的模拟,对于开展实际波浪对于工程建筑物的作用具有重要的意义。本文采用线性叠加的单叠加模型,建立了多向不规则波浪的确定性模拟方法。基于理论模拟的规则波、单向不规则波和多向不规则波,验证了波浪确定性模拟方法的有效性。定性地对比分析了模拟波列和已知波列的一致性;定量地研究了模拟波浪在空间范围rr/Ls的误差分布情况(rr表示指定位置与给定位置的空间距离,Ls为有效波长)。并且建议,采用本文方法进行波浪确定性模拟时,最佳的浪高仪间距应小于0.12Ls
  • 图  1  波浪浪高仪的布置形式

    Fig.  1  Sketch of the wave gauges

    图  2  2号(a)和5号(b)浪高仪在T0=250/256 s,H0=0.04 m,θ=π/6时的波浪过程线

    Fig.  2  Comparison of the wave surface elevation histories for T0= 250/256 s, H0=0.04 m, θ=π/6 of No.2 (a) and No.5 (b) gauges

    图  3  理论波浪频谱(Ts=1.5 s,Hs=0.04 m)

    Fig.  3  Theoretical wave frequency spectrum (Ts=1.5 s,Hs=0.04 m)

    图  4  R/Ls为0.06和0.12时,average-θi和max-Energy-θiθEr沿fi的分布(Ts=1.5 s, Hs=0.04 m)

    Fig.  4  Variation of the θEr for average-θi and max-Energy-θi with fi for R/Ls=0.06 and R/Ls=0.12 (Ts=1.5 s, Hs=0.04 m)

    图  5  单向不规则波已知波列和模拟波列在不同rr/Ls时的对比(Ts=1.5 s,Hs=0.04 m)

    Fig.  5  Comparison of the original and simulated uni-directional irregular wave surface elevation histories (Ts=1.5 s,Hs=0.04 m)

    图  6  采用average-θi和max-Energy-θi模拟所得波浪的Ermaxrr/Ls的变化(Ts=1.5 s,Hs=0.04 m)

    Fig.  6  Variation of Ermax for simulated waves with rr/Ls using average-θi and max-Energy-θi respectively (Ts=1.5 s, Hs=0.04 m)

    图  7  R/Ls不同时,采用average-θi方法计算的θEr沿fi的分布(Ts=1.5 s,Hs=0.04 m,s=25)

    Fig.  7  Variation of θEr with fi for average-θi method with different R/Ls (Ts=1.5 s, Hs=0.04 m, s=25)

    图  8  rr/Ls=0.35,R/Ls不同时,3号浪高仪位置理论波列和确定性模拟波列的对比(Ts=1.5 s,Hs=0.04 m,s=25)

    Fig.  8  Comparison of theoretical and simulated wave surface elevation histories for different R/Ls with rr/Ls=0.35 at No.3 gauge (Ts=1.5 s, Hs=0.04 m, s=25)

    图  9  R/Ls=0.06,rr/Ls不同时,3号浪高仪位置处理论波列和确定性模拟波列的对比(Ts=1.5 s,Hs=0.04 m,s=25)

    Fig.  9  Comparison of theoretical and simulated wave surface elevation histories for different rr/Ls with R/Ls=0.06 at No.3 gauge (Ts=1.5 s, Hs=0.04 m, s=25)

    图  10  R/Ls=0.06时采用计算的average-θi和max-Energy-θi模拟所得波浪的Ermaxrr/Ls的变化(Ts=1.5 s, Hs=0.04 m, s=25)

    Fig.  10  Variation of Ermax for simulated waves with rr/Ls using average-θi and max-Energy-θi of R/Ls=0.06 (Ts=1.5 s, Hs=0.04 m, s=25)

    图  11  不同的R/Ls采用average-θi模拟所得波浪的Ermaxrr/Ls的变化(Ts=1.5 s, Hs=0.04 m, s=25)

    Fig.  11  Variation of Ermax for simulated waves with rr/Ls using average-θi with different R/Ls (Ts=1.5 s, Hs=0.04 m, s=25)

  • [1] Baldock T E, Swan C. Numerical calculations of large transient water waves[J]. Applied Ocean Research, 1994, 16(2): 101−112. doi: 10.1016/0141-1187(94)90006-X
    [2] 裴玉国, 张宁川, 张运秋. 畸形波数值模拟和定点生成[J]. 海洋工程, 2006, 24(4): 20−26. doi: 10.3969/j.issn.1005-9865.2006.04.004

    Pei Yuguo, Zhang Ningchuan, Zhang Yunqiu. Numerical simulation of freak waves and its generation at a certain location[J]. The Ocean Engineering, 2006, 24(4): 20−26. doi: 10.3969/j.issn.1005-9865.2006.04.004
    [3] Liang Xiufeng, Yang JianMin, Li Jun, et al. Numerical simulation of irregular wave-simulating irregular wave train[J]. Journal of Hydrodynamics, 2010, 22(4): 537−545. doi: 10.1016/S1001-6058(09)60086-X
    [4] 崔成, 张宁川, 裴玉国. 畸形波生成、演化过程研究——波面时间过程随位置的变化[J]. 海洋通报, 2011, 30(4): 387−396. doi: 10.3969/j.issn.1001-6392.2011.04.005

    Cui Cheng, Zhang Ningchuan, Pei Yuguo. Research on the generation and evolution of freak wave−time-process of the water surface elevations’ variation with positions[J]. Marine Science Bulletin, 2011, 30(4): 387−396. doi: 10.3969/j.issn.1001-6392.2011.04.005
    [5] Finnegan W, Goggins J. Linear irregular wave generation in a numerical wave tank[J]. Applied Ocean Research, 2015, 52: 188−200. doi: 10.1016/j.apor.2015.06.006
    [6] 沈王刚. 基于FMBEM的数值波浪水池及非线性波浪重构方法[D]. 上海: 上海交通大学, 2018.

    Shen Wanggang. Fmbem-based numerical wave tank and nonlinear wave refactoring method[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [7] Naaijen P, Blondel-Couprie E. Reconstruction and prediction of short-crested seas based on the application of a 3d-FFT on synthetic waves: Part 1-Reconstruction[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: American Society of Mechanical Engineers (ASME), 2012.
    [8] Blondel-Couprie E, Naaijen P. Reconstruction and prediction of short-crested seas based on the application of a 3D-FFT on synthetic waves: Part 2-Prediction[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: American Society of Mechanical Engineers (ASME), 2012.
    [9] 刘思. 多向不规则波群的模拟研究[D]. 大连: 大连理工大学, 2012.

    Liu Si. The research on simulation of multidirectional irregular wave groups[D]. Dalian: Dalian University of Technology, 2012.
    [10] 俞聿修, 柳淑学. 随机波浪及其工程应用[M]. 4版. 大连: 大连理工大学出版社, 2011.

    Yu Yuxiu, Liu Shuxue. Random Wave and its Applications to Engineering[M]. 4th ed. Dalian: Dalian University of Technology Press, 2011.
    [11] Draycott S, Davey T, Ingram D M, et al. The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins[J]. Coastal Engineering, 2016, 114: 265−283. doi: 10.1016/j.coastaleng.2016.04.012
    [12] Luo L, Liu S, Li J, et al. The deterministic reconstruction of multi-directional irregular waves[C]//Proceedings of the Twenty-ninth (2019) International Ocean and Polar Engineering Conference. Honolulu, Hawaii, USA: ISOPE, 2019 (3): 3546–3552.
    [13] Borgman L E. Statistical reliability of computations based on wave spectral relations[C]// Proceedings of the International Symposium on Ocean Wave Measurement and Analysis. New York: ASCE, 1974: 362–378.
    [14] Esteva D. Wave direction computations with three gage arrays[J]. Coastal Engineering Proceedings, 1976, 1(15): 19. doi: 10.9753/icce.v15.19
    [15] Fernandes A A, Gouveia A D, Nagarajan R. Determination of wave direction from linear and polygonal arrays[J]. Ocean Engineering, 1988, 15(4): 345−357. doi: 10.1016/0029-8018(88)90050-9
    [16] Fernandes A A, Sarma Y V B, Menon H B. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods[J]. Ocean Engineering, 2000, 27(4): 345−363. doi: 10.1016/S0029-8018(99)00024-4
    [17] Goda Y. A comparative review on the functional forms of directional wave spectrum[J]. Coastal Engineering Journal, 1999, 41(1): 1−20. doi: 10.1142/S0578563499000024
    [18] 孙忠滨, 柳淑学, 李金宣. 基于改进Boussinesq方程三角形网格有限元模型[J]. 海洋工程, 2010, 28(3): 50−58, 67. doi: 10.3969/j.issn.1005-9865.2010.03.008

    Sun Zhongbin, Liu Shuxue, Li Jinxuan. Triangular element FEM model based on modified Boussinesq equations[J]. The Ocean Engineering, 2010, 28(3): 50−58, 67. doi: 10.3969/j.issn.1005-9865.2010.03.008
  • 加载中
图(11)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  50
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2020-06-05
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回