留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北冰洋中更新世以来黏土矿物变化特征及其反映的洋流和冰盖演化

徐仁辉 王汝建 肖文申 董林森 刘焱光

徐仁辉,王汝建,肖文申,等. 西北冰洋中更新世以来黏土矿物变化特征及其反映的洋流和冰盖演化[J]. 海洋学报,2020,42(9):50–60 doi: 10.3969/j.issn.0253-4193.2020.09.006
引用本文: 徐仁辉,王汝建,肖文申,等. 西北冰洋中更新世以来黏土矿物变化特征及其反映的洋流和冰盖演化[J]. 海洋学报,2020,42(9):50–60 doi: 10.3969/j.issn.0253-4193.2020.09.006
Xu Renhui,Wang Rujian,Xiao Wenshen, et al. Variations in clay mineral composition in the western Arctic Ocean since the mid-Pleistocene: Implications on changes in circulation and ice sheet development[J]. Haiyang Xuebao,2020, 42(9):50–60 doi: 10.3969/j.issn.0253-4193.2020.09.006
Citation: Xu Renhui,Wang Rujian,Xiao Wenshen, et al. Variations in clay mineral composition in the western Arctic Ocean since the mid-Pleistocene: Implications on changes in circulation and ice sheet development[J]. Haiyang Xuebao,2020, 42(9):50–60 doi: 10.3969/j.issn.0253-4193.2020.09.006

西北冰洋中更新世以来黏土矿物变化特征及其反映的洋流和冰盖演化

doi: 10.3969/j.issn.0253-4193.2020.09.006
基金项目: 国家自然科学基金(41776187,41030859);南北极环境综合考察与评估专项(CHINARE2012-2016-03-02)。
详细信息
    作者简介:

    徐仁辉(1992-),河南省信阳市人,主要从事海洋地质学、古海洋学与古气候学研究。E-mail: xurh@tongji.edu.cn

    通讯作者:

    王汝建(1959-),男,云南省昆明市人,教授,主要从事海洋地质学、古海洋学与古气候学研究。E-mail: rjwang@tongji.edu.cn

  • 中图分类号: P736.21

Variations in clay mineral composition in the western Arctic Ocean since the mid-Pleistocene: Implications on changes in circulation and ice sheet development

  • 摘要: 本文通过对中国第七次北极考察在西北冰洋阿尔法脊南部钻取的ARC7-LIC岩芯沉积物的XRF Ca/Al比值、冰筏碎屑和黏土矿物等研究,重建了中更新世以来研究区沉积物源和周边冰盖的演化历史。ARC7-LIC岩芯黏土矿物组合类型变化显示:深海氧同位素(MIS)29~13期黏土矿物组合主要以西伯利亚物源区为主,而MIS 12期以来以北美物源为主。黏土矿物组合的变化,反映中布容期前后洋流模式的改变。同时,MIS 12期高含量的蒙脱石可能来自北美物源。物源指标对比显示,劳伦冰盖在MIS 16期首次向西北冰洋大规模排泄冰山,并且从MIS 12期开始,西北冰洋周围冰盖的进退幅度增大。在MIS 6期、4期和3期,Ca/Al和高岭石含量的不协同变化指示北美冰盖的发育具有区域差异性,位于阿拉斯加北部和麦肯齐河流域的冰盖较班克斯岛−维多利亚岛一侧更发育,崩解的冰山能将高岭石带到研究区沉积下来。
  • 图  1  研究站位以及北冰洋洋底地形和冰架分布

    红色圆点为本文研究站位ARC7-LIC,黑色圆点为对比站位;透明箭头表示表层洋流大致位置及方向(波弗特环流和穿极流);黄色箭头指示河流入海口大致位置;白色区域表示更新世冰期时推测的北冰洋最大冰盖范围[1120]

    Fig.  1  Research stations and distribution of ocean floor topography and ice shelf in the Arctic Ocean

    The red dot is Core ARC7-LIC in this paper, and the black dots are referenced sediment cores. Transparent arrows indicate the approximate location and direction of surface ocean currents (Transpolar Drift and Beaufort Gyre). Large circum-Arctic rivers are indicated by yellow arrows. White shaded areas indicate the maximum extent of Pleistocene glaciations around the Arctic Ocean[11, 20]

    图  2  全球大洋底栖有孔虫LR04-δ18O曲线[56]、阿尔法脊岩芯Ca和Mn合成标准曲线[6]与ARC7-LIC岩芯XRF元素扫描Ca/Al和Mn/Al、颜色反射率L*和a*/b*、粗组分粒径>63 µm和>154 µm百分含量、底栖和浮游有孔虫丰度的对比

    Fig.  2  Stratigraphic assignments of Core ARC7-LIC, based on XRF-Ca/Al, -Mn/Al, color index, IRD content, foraminiferal abundances and AMS 14C dating, correlation to Alpha Ridge stacked Ca and Mn records[6], and global benthic LR04-δ18O record[56]

    图  3  ARC7-LIC岩芯Ca/Al比值、IRD(>154 μm)百分含量、高岭石、蒙脱石、伊利石和绿泥石百分含量及其与BN05岩芯参数[21],以及全球大洋底栖有孔虫LR04-δ18O[56]和海平面变化[22]对比

    Fig.  3  Ca/Al ratio, IRD (> 154 μm) content, kaolinite, montmorillonite, illite, and chlorite contents in Core ARC7-LIC, compared to the same proxies in Core BN05[21], and global benthic LR04-δ18O [56] and sea level curve[22]

    图  4  现代北极部分海域表层黏土矿物分布[343863-65](a)和西北冰洋ARC7-LIC岩芯黏土矿物分布(b)三角图

    Fig.  4  Triangular diagram of clay mineral composition in modern Arctic surface sediments[343863-65] (a) and Core ARC7-LIC (b)

    表  1  本文中研究岩芯信息

    Tab.  1  Studied and referenced cores information in this paper

    岩芯纬度经度水深/m参考文献
    ARC7-LIC82°49.62′ N159°8.85′ W3018本文
    ARC4-BN1085°38.60′ N178°38.60′ W2434[6]
    ARC3-B84A84°26.54′ N143°34.83′ W2280[6]
    ARC3-B85A85°24.24′ N147°29.11′ W2376[6]
    ARC4-BN0580°29.04′ N161°27.90′ W3156[21]
    PS 2185-687°31.90′ N144°22.90′ E1051[45]
    下载: 导出CSV

    表  2  ARC7-LIC岩芯的Nps-AMS14C测年数据校正

    Tab.  2  AMS14C chronology of Core ARC7-LIC based on planktonic foraminifera Nps

    样品编号深度/cmAMS14C年龄/a BP碳储库校正后年龄/a BP
    UCIAMS#2195420~27 535±407 696±96
    UCIAMS#2195436~837 560±49040 765±977
    UCIAMS#21954410~1242 620±90044 664±1 535
    下载: 导出CSV

    表  3  ARC7-LIC岩芯MIS 12期及其前后时期黏土矿物平均含量

    Tab.  3  Averaged clay mineral content in Core ARC7-LIC before and after MIS 12

    氧同位素期次高岭石平均
    含量/%
    蒙脱石平均
    含量/%
    绿泥石平均
    含量/%
    伊利石平均
    含量/%
    MIS 11~1期21172339
    MIS 12期16332031
    MIS 29~13期11232640
    下载: 导出CSV
  • [1] Moritz R E, Bitz C M, Steig E J. Dynamics of recent climate change in the Arctic[J]. Science, 2002, 297(5586): 1497−1502. doi: 10.1126/science.1076522
    [2] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96.
    [3] Stroeve J C, Serreze M C, Holland M M, et al. The Arctic’s rapidly shrinking sea ice cover: A research synthesis[J]. Climatic Change, 2012, 110(3/4): 1005−1027.
    [4] Cronin T M, DeNinno L H, Polyak L, et al. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean[J]. Marine Micropaleontology, 2014, 111: 118−133. doi: 10.1016/j.marmicro.2014.05.001
    [5] Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 2018, 13(10): 103001. doi: 10.1088/1748-9326/aade56
    [6] Wang Rujian, Polyak L, Xiao Wenshen, et al. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales[J]. Quaternary Science Reviews, 2018, 181: 93−108. doi: 10.1016/j.quascirev.2017.12.006
    [7] Zhang Taoliang, Wang Rujian, Polyak L, et al. Enhanced deposition of coal fragments at the Chukchi margin, western Arctic Ocean: Implications for deglacial drainage history from the Laurentide Ice Sheet[J]. Quaternary Science Reviews, 2019, 218: 281−292. doi: 10.1016/j.quascirev.2019.06.029
    [8] Clark D L, Chern L A, Hogler J A, et al. Late Neogene climate evolution of the central Arctic Ocean[J]. Marine Geology, 1990, 93: 69−94. doi: 10.1016/0025-3227(90)90078-X
    [9] Proshutinsky A, Bourke R H, McLaughlin F A. The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales[J]. Geophysical Research Letters, 2002, 29(23): 15-1−15-4. doi: 10.1029/2002GL015847
    [10] Bischof J F, Darby D A. Mid- to Late Pleistocene ice drift in the western Arctic Ocean: Evidence for a different circulation in the past[J]. Science, 1997, 277(5322): 74−78. doi: 10.1126/science.277.5322.74
    [11] Jakobsson M, Nilsson J, Anderson L, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation[J]. Nature Communications, 2016, 7: 10365. doi: 10.1038/ncomms10365
    [12] Keigwin L D, Klotsko S, Zhao N, et al. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling[J]. Nature Geoscience, 2018, 11(8): 599−604. doi: 10.1038/s41561-018-0169-6
    [13] Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2008, 27(2): 114−127. doi: 10.1111/j.1751-8369.2008.00057.x
    [14] Deschamps C E, Montero-Serrano J C, St-Onge G. Sediment provenance changes in the western Arctic Ocean in response to ice rafting, sea level, and oceanic circulation variations since the last deglaciation[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2147−2165. doi: 10.1029/2017GC007411
    [15] Schreck M, Nam S I, Polyak L, et al. Improved Pleistocene sediment stratigraphy and paleoenvironmental implications for the western Arctic Ocean off the East Siberian and Chukchi margins[J]. Arktos, 2018, 4(1): 21. doi: 10.1007/s41063-018-0057-8
    [16] Larsen E, Kjær K H, Demidov I N, et al. Late Pleistocene glacial and lake history of northwestern Russia[J]. Boreas, 2006, 35(3): 394−424. doi: 10.1080/03009480600781958
    [17] Svendsen J I, Alexanderson H, Astakhov V I, et al. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews, 2004, 23(11/13): 1229−1271.
    [18] Dyke A S, Andrews J T, Clark P U, et al. The Laurentide and Innuitian ice sheets during the last glacial maximum[J]. Quaternary Science Reviews, 2002, 21(1/3): 9−31.
    [19] England J H, Furze M F A, Doupé J P. Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation[J]. Quaternary Science Reviews, 2009, 28(17/18): 1573−1596.
    [20] Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the East Siberian continental margin[J]. Nature Geoscience, 2013, 6(10): 842−846. doi: 10.1038/ngeo1904
    [21] Dong Lisen, Liu Yanguang, Shi Xuefa, et al. Sedimentary record from the Canada Basin, Arctic Ocean: Implications for late to middle Pleistocene glacial history[J]. Climate of the Past, 2017, 13(5): 511−531. doi: 10.5194/cp-13-511-2017
    [22] Miller G H, Alley R B, Brigham-Grette J, et al. Arctic amplification: can the past constrain the future?[J]. Quaternary Science Reviews, 2010, 29(15/16): 1779−1790.
    [23] Polyak L, Jakobsson M. Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges[J]. Oceanography, 2011, 24(3): 52−64. doi: 10.5670/oceanog.2011.55
    [24] Stein R. Arctic Ocean sediments: processes, proxies, and paleoenvironment[J]. Developments in Marine Geology, 2008, 2: 3. doi: 10.1016/S1572-5480(08)00001-8
    [25] Stärz M, Gong Xun, Stein R, et al. Glacial shortcut of Arctic sea-ice transport[J]. Earth and Planetary Science Letters, 2012, 357−358: 257−267. doi: 10.1016/j.jpgl.2012.09.033
    [26] Stein R, Fahl K, Gierz P, et al. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial[J]. Nature Communications, 2017, 8: 373. doi: 10.1038/s41467-017-00552-1
    [27] 黄晓璇, 王汝建, 肖文申, 等. 西北冰洋楚科奇海台晚第四纪以来陆源沉积物搬运机制及其古环境意义[J]. 海洋地质与第四纪地质, 2018, 38(2): 52−62.

    Huang Xiaoxuan, Wang Rujian, Xiao Wenshen, et al. Transportation mechanism of terrigenous sediment and its paleoenvironmental implications on the Chukchi Plateau, western Arctic Ocean during the late Quaternary[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 52−62.
    [28] Bischof J, Clark D L, Vincent J S. Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean[J]. Paleoceanography and Paleoclimatology, 1996, 11(6): 743−756.
    [29] Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge[J]. Quaternary Science Reviews, 2014, 92: 140−154. doi: 10.1016/j.quascirev.2013.12.011
    [30] Darby D A, Bischof J F, Spielhagen R F, et al. Arctic ice export events and their potential impact on global climate during the late Pleistocene[J]. Paleoceanography and Paleoclimatology, 2002, 17(2): 15-1−15-17.
    [31] Stokes C R, Clark C D, Darby D A, et al. Late Pleistocene ice export events into the Arctic Ocean from the M'Clure strait ice stream, Canadian Arctic Archipelago[J]. Global and Planetary Change, 2005, 49(3/4): 139−162.
    [32] Wang Rujian, Xiao Wenshen, März C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean[J]. Global and Planetary Change, 2013, 108: 100−118. doi: 10.1016/j.gloplacha.2013.05.017
    [33] Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172(1/2): 91−115.
    [34] Darby D A, Myers W B, Jakobsson M, et al. Modern dirty sea ice characteristics and sources: the role of anchor ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09008.
    [35] Chamley H. Clay Sedimentology[M]. Berlin: Springer Science & Business Media, 2013.
    [36] Wang Rong, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions[J]. Geo-Marine Letters, 2016, 36(4): 259−270. doi: 10.1007/s00367-016-0445-7
    [37] 陈志华, 石学法, 韩贻兵, 等. 北冰洋西部表层沉积物粘土矿物分布及环境指示意义[J]. 海洋科学进展, 2004, 22(4): 446−454. doi: 10.3969/j.issn.1671-6647.2004.04.006

    Chen Zhihua, Shi Xuefa, Han Yibing, et al. Clay mineral distributions in surface sediments from the western Arctic Ocean and their implications for sediment environments[J]. Advances in Marine Science, 2004, 22(4): 446−454. doi: 10.3969/j.issn.1671-6647.2004.04.006
    [38] 董林森, 刘焱光, 石学法, 等. 西北冰洋表层沉积物黏土矿物分布特征及物质来源[J]. 海洋学报, 2014, 36(4): 22−32.

    Dong Linsen, Liu Yanguang, Shi Xuefa, et al. Distributions and sources of clay minerals in the surface sediments of the western Arctic Ocean[J]. Haiyang Xuebao, 2014, 36(4): 22−32.
    [39] 邱中炎, 沈忠悦, 韩喜球. 北极圈海域表层沉积物的黏土矿物特征及其环境意义[J]. 海洋地质与第四纪地质, 2007, 27(3): 31−36.

    Qiu Zhongyan, Shen Zhongyue, Han Xiqiu. Clay minerals in surface sediments from Arctic Ocean and their environmental significance[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 31−36.
    [40] 张德玉, 高爱国, 张道建. 楚科奇海–加拿大海盆表层沉积物中的粘土矿物[J]. 海洋科学进展, 2008, 26(2): 171−183. doi: 10.3969/j.issn.1671-6647.2008.02.007

    Zhang Deyu, Gao Aiguo, Zhang Daojian. Clay minerals in surface sediments from the Chukchi Sea and Canadian Basin[J]. Advances in Marine Science, 2008, 26(2): 171−183. doi: 10.3969/j.issn.1671-6647.2008.02.007
    [41] Reynolds R C Jr, Anderson D M. Cristobalite and clinoptilolite in bentonite beds of the Colville Group, northern Alaska[J]. Journal of Sedimentary Research, 1967, 37(3): 966−969. doi: 10.2110/jsr.37.966
    [42] Naidu A S, Burrell D C, Hood D W. Clay mineral composition and geologic significance of some Beaufort Sea sediments[J]. Journal of Sedimentary Research, 1971, 41(3): 691−694.
    [43] Darby D A. Kaolinite and other clay minerals in Arctic Ocean sediments[J]. Journal of Sedimentary Research, 1975, 45(1): 272−279.
    [44] Kobayashi D, Yamamoto M, Irino T, et al. Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period[J]. Polar Science, 2016, 10(4): 519−531. doi: 10.1016/j.polar.2016.07.005
    [45] Spielhagen R F, Baumann K H, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history[J]. Quaternary Science Reviews, 2004, 23(11/13): 1455−1483.
    [46] Liu Zhifei, Colin C, Huang Wei, et al. Climatic and tectonic controls on weathering in South China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05005.
    [47] Liu Zhifei, Colin C, Li Xiajing, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1/4): 48−60.
    [48] Hanslik D, Jakobsson M, Backman J, et al. Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections[J]. Quaternary Science Reviews, 2010, 29(25/26): 3430−3441.
    [49] Jakobsson M, Løvlie R, Arnold E M, et al. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean[J]. Global and Planetary Change, 2001, 31(1/4): 1−22.
    [50] Löwemark L, O'Regan M, Hanebuth T J J, et al. Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365−366: 192−208. doi: 10.1016/j.palaeo.2012.09.028
    [51] Jakobsson M, Løvlie R, Al-Hanbali H, et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology, 2000, 28(1): 23−26. doi: 10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2
    [52] Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1/2): 73−93.
    [53] Stein R, Matthiessen J, Niessen F, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97−121.
    [54] Xiao Wenshen, Polyak L, Wang Rujian, et al. Middle to Late Pleistocene Arctic paleoceanographic changes based on sedimentary records from Mendeleev Ridge and Makarov Basin[J]. Quaternary Science Reviews, 2020, 228: 106105. doi: 10.1016/j.quascirev.2019.106105
    [55] 谢昕, 王汝建, 肖文申, 等. 西北冰洋及白令海沉积物颜色旋回与成因[J]. 科学通报, 2016, 61(16): 1828−1839.

    Xie Xin, Wang Rujian, Xiao Wenshen, et al. Sediment color cycles and their causes in the western Arctic Ocean and Bering Sea[J]. Chinese Science Bulletin, 2016, 61(16): 1828−1839.
    [56] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003.
    [57] Lazar K B, Polyak L. Pleistocene benthic foraminifers in the Arctic Ocean: implications for sea-ice and circulation history[J]. Marine Micropaleontology, 2016, 126: 19−30. doi: 10.1016/j.marmicro.2016.04.004
    [58] Cronin T M, Polyak L, Reed D, et al. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes[J]. Quaternary Science Reviews, 2013, 79: 157−167. doi: 10.1016/j.quascirev.2012.12.010
    [59] Hodell D A, Channell J E T, Curtis J H, et al. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~ 640 ka)?[J]. Paleoceanography and Paleoclimatology, 2008, 23(4): PA4218.
    [60] Polyak L, Best K M, Crawford K A, et al. Quaternary history of sea ice in the western Arctic Ocean based on foraminifera[J]. Quaternary Science Reviews, 2013, 79: 145−156. doi: 10.1016/j.quascirev.2012.12.018
    [61] Polyak L, Bischof J, Ortiz J D, et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean[J]. Global and Planetary Change, 2009, 68(1/2): 5−17.
    [62] Dipre G R, Polyak L, Kuznetsov A B, et al. Plio-Pleistocene sedimentary record from the Northwind Ridge: New insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma[J]. Arktos, 2018, 4(1): 24. doi: 10.1007/s41063-018-0054-y
    [63] Nürnberg D, Levitan M A, Pavlidis J A, et al. Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas[J]. Geologische Rundschau, 1995, 84(3): 665−682. doi: 10.1007/s005310050032
    [64] Kalinenko V V, Shelekhova E S, Wahsner M. Clay minerals in surface sediments of the East Siberian and Laptev Seas[C]//Surface Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and along the Eurasian Continental Margin. Berichte zur Polarforschung. Bremerhaven: Wegener Inst. Polar Meeresforsch., 1996, 212: 43-50.
    [65] Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting[J]. Continental Shelf Research, 2003, 23(11/13): 1175−1200.
    [66] Vogt C, Knies J. Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation—the clay mineral group smectite perspective[J]. Marine Geology, 2008, 250(3/4): 211−222.
    [67] Darby D A, Ortiz J D, Grosch C E, et al. 1, 500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift[J]. Nature Geoscience, 2012, 5(12): 897−900. doi: 10.1038/ngeo1629
    [68] Spielhagen R F, Bonani G, Eisenhauer A, et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets[J]. Geology, 1997, 25(9): 783−786. doi: 10.1130/0091-7613(1997)025<0783:AOEFLQ>2.3.CO;2
    [69] Barth A M, Clark P U, Bill N S, et al. Climate evolution across the Mid-Brunhes transition[J]. Climate of the Past, 2018, 14(12): 2071−2087. doi: 10.5194/cp-14-2071-2018
    [70] Winter B L, Johnson C M, Clark D L. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4181−4200. doi: 10.1016/S0016-7037(97)00215-9
    [71] Hodell D A, Kanfoush S L, Venz K A, et al. The mid-brunhes transition in ODP sites 1089 and 1090 (Subantarctic South Atlantic)[M]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington, D.C.: Geophysical Monograph Series, 2003, 137: 113−130.
    [72] Cronin T M, Dwyer G S, Caverly E K, et al. Enhanced Arctic amplification began at the mid-Brunhes event ~ 400, 000 years ago[J]. Scientific Reports, 2017, 7: 14475. doi: 10.1038/s41598-017-13821-2
    [73] Darby D A, Polyak L, Bauch H A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas–a review[J]. Progress in Oceanography, 2006, 71(2/4): 129−144.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  19
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-21
  • 修回日期:  2020-03-27
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回