Comparison of wave simulation results of different ice dissipation source terms in WAVEWATCH Ⅲ
-
摘要: 为了验证第三代海浪模式WAVEWATCH Ⅲ V5.16中不同海冰损耗源项在秋季波弗特海对海冰存在下海浪的模拟能力,建立自波弗特海至马更些河河口的两级嵌套海浪模型,对2014年8月1日至9月31日该海域北极风暴作用下的暴风浪有效波高进行模拟研究,并利用浮标实测数据对模拟结果进行对比分析。结果表明,在应用于大范围海域、缺乏海冰有效剪切模量、黏性系数等属性参数的前提下,离海冰较近、海浪能量受海冰控制作用较为明显的区域,各海冰源项中IC1源项表现最好,能够表现出更加符合波弗特海海域特定的冰情、冰况的能量耗散特征。
-
关键词:
- WAVEWATCH Ⅲ 模式 /
- 波弗特海 /
- 海冰源项 /
- 海浪模拟
Abstract: To evaluate the wave simulation capacity of the sea ice dissipation source terms in the third-generation wave model WAVEWATCH III V5.16, a nested wave model covering the area from Beaufort Sea to Mackenzie River Estuary is established to simulate the storm waves under the effect of Arctic storms from August 1st to September 31st, 2014. Simulated significant wave heights are calibrated using the measurements from SWIFT buoy. Results show that in the absence of ice data (i.e., with default model settings), in the areas near the ice edge, where wave energy is strongly controlled by sea ice, the performance of IC1 ice source item is the best, of which the results are more in line with the specific ice conditions in the Beaufort Sea.-
Key words:
- WAVEWATCH Ⅲ model /
- Beaufort Sea /
- ice source terms /
- wave simulation
-
表 1 SWIFT10有效波高模拟值与浮标值的均方根误差(RMSE)、相关系数(CC)和绝对平均误差(MAE)
Tab. 1 RMSE, CC and MAE of observed and simulated significant wave heights in SWIFT10
方案 无冰 IC0(25%) IC0(50%) IC1 IC2 IC3 均方根误差/m 0.663 0.631 0.554 0.425 0.620 0.615 相关系数 0.662 0.674 0.782 0.834 0.686 0.686 绝对平均误差/m 0.437 0.425 0.328 0.303 0.399 0.413 表 2 SWIFT11有效波高模拟值与浮标值的的均方根误差(RMSE)、相关系数(CC)和绝对平均误差(MAE)
Tab. 2 RMSE, CC and MAE of observed and simulated significant wave heights in SWIFT11
方案 无冰 IC0(25%) IC0(50%) IC1 IC2 IC3 均方根误差/m 0.410 0.420 0.611 0.447 0.400 0.421 相关系数 0.885 0.897 0.842 0.919 0.913 0.914 绝对平均误差/m 0.331 0.343 0.468 0.367 0.325 0.344 -
[1] Kwok R, Untersteiner N. The thinning of Arctic sea ice[J]. Physics Today, 2011, 64(4): 36−41. doi: 10.1063/1.3580491 [2] 柯长青, 彭海涛, 孙波, 等. 2002年−2011年北极海冰时空变化分析[J]. 遥感学报, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044Ke Changqing, Peng Haitao, Sun Bo, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011[J]. Journal of Remote Sensing, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044 [3] 刘玥, 庞小平, 赵羲, 等. 基于海冰密集度遥感数据的波弗特海海冰时空变化研究[J]. 极地研究, 2018, 30(2): 161−172.Liu Yue, Pang Xiaoping, Zhao Xi, et al. Analysis of spatiotemporal variability of sea ice in the Beaufort Sea using passive microwave remote sensing data[J]. Chinese Journal of Polar Research, 2018, 30(2): 161−172. [4] Swail V R, Cardone V J, Callahan B, et al. The MSC Beaufort wind and wave reanalysis[C]//Proceedings of the Tenth International Workshop on Wave Hindcasting and Forecasting. North Shore, Oahu, Hawaii, USA: Environment Canada, U.S. Army Engineer, Research and Development Center's Coastal and Hydraulics Laboratory, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology, 2007: E1. [5] Lintern D G, Macdonald R W, Solomon S M, et al. Beaufort Sea storm and resuspension modeling[J]. Journal of Marine Systems, 2013, 127: 14−25. doi: 10.1016/j.jmarsys.2011.11.015 [6] Xu Fumin, Perrie W, Solomon S. Shallow water dissipation processes for wind waves off the Mackenzie Delta[J]. Atmosphere-Ocean, 2013, 51(3): 296−308. doi: 10.1080/07055900.2013.794123 [7] Hoque M A, Perrie W, Solomon S M. Evaluation of two spectral wave models for wave hindcasting in the Mackenzie Delta[J]. Applied Ocean Research, 2017, 62: 169−180. doi: 10.1016/j.apor.2016.11.009 [8] 郑崇伟, 周林, 宋帅, 等. 1307号台风“苏力”台风浪数值模拟[J]. 厦门大学学报: 自然科学版, 2014, 53(2): 257−262.Zheng Chongwei, Zhou Lin, Song Shuai, et al. Simulation of the wave field caused by 1307 typhoon "Soulik"[J]. Journal of Xiamen University: Natural Science, 2014, 53(2): 257−262. [9] Huchet M, Leckler F, Filipot J F, et al. On the high resolution coastal applications with WAVEWATCH Ⅲ[C]//14th International Workshop on Wave Hindcasting and Forecasting, and 5th Coastal Hazard Symposium. Key West, Florida, USA: Environment Canada, U.S. Army Engineer, Research and Development Center's Coastal and Hydraulics Laboratory, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology , 2015: W2. [10] Seemanth M, Bhowmick S A, Kumar R, et al. Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH Ⅲ for Indian Ocean[J]. Ocean Engineering, 2016, 124: 252−273. doi: 10.1016/j.oceaneng.2016.07.023 [11] 沈旭伟, 范力阳, 陈国平, 等. 台风“鲇鱼”作用下南海波浪场的数值模拟研究[J]. 水道港口, 2016, 37(4): 369−374. doi: 10.3969/j.issn.1005-8443.2016.04.012Shen Xuwei, Fan Liyang, Chen Guoping, et al. Numerical simulation studies of influence on wave field in the South China Sea caused by typhoon Megi[J]. Journal of Waterway and Harbor, 2016, 37(4): 369−374. doi: 10.3969/j.issn.1005-8443.2016.04.012 [12] Erick W E, Thomson J, Shen H H, et al. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 7991−8007. doi: 10.1002/2016JC012251 [13] Cheng Sukun, Rogers W E, Thomson J, et al. Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8770−8793. doi: 10.1002/2017JC013275 [14] Komen G J, Cavaleri L, Donelan M, et al. Dynamics and Modelling of Ocean Waves[M]. Cambridge: Cambridge University Press, 1994: 554. [15] Liu A K, Mollo-Christensen E. Wave propagation in a solid ice pack[J]. Journal of Physical Oceanography, 1988, 18(11): 1702−1712. doi: 10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2 [16] Liu A K, Holt B, Vachon P W. Wave propagation in the marginal ice zone: Model predictions and comparisons with buoy and synthetic aperture radar data[J]. Journal of Geophysical Research: Oceans, 1991, 96(C3): 4605−4621. doi: 10.1029/90JC02267 [17] Ardhuin F, Collard F, Chapron B, et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015, 42(7): 2317−2325. doi: 10.1002/2014GL062940 [18] Wang Ruixue, Shen H H. Gravity waves propagating into an ice-covered ocean: A viscoelastic model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): 24−36. [19] Wadhams P, Squire V A, Goodman D J, et al. The attenuation rates of ocean waves in the marginal ice zone[J]. Journal of Geophysical Research: Oceans, 1988, 93(C6): 6799−6818. doi: 10.1029/JC093iC06p06799 [20] Meylan M H, Bennetts L G, Kohout A L. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone[J]. Geophysical Research Letters, 2014, 41(14): 5046−5051. doi: 10.1002/2014GL060809 [21] Kohout A L, Meylan M H. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone[J]. Journal of Geophysical Research Oceans, 2008, 113(C9): C09016. [22] Ardhuin F, Boutin G, Stopa J, et al. Wave attenuation through an Arctic Marginal Ice Zone on 12 October 2015: 2: numerical modeling of waves and associated ice breakup[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5652−5668. doi: 10.1002/2018JC013784 [23] Horvat C, Tziperman E. A prognostic model of the sea-ice floe size and thickness distribution[J]. The Cryosphere, 2015, 9(6): 2119−2134. doi: 10.5194/tc-9-2119-2015 [24] Kohout A L, Williams M J M, Dean S M, et al. Storm-induced sea-ice breakup and the implications for ice extent[J]. Nature, 2014, 509(7502): 604−607. doi: 10.1038/nature13262 [25] Li Jingkai, Kohout A L, Shen H H. Comparison of wave propagation through ice covers in calm and storm conditions[J]. Geophysical Research Letters, 2015, 42(14): 5935−5941. doi: 10.1002/2015GL064715 [26] Janssen P A E M. Quasi-linear theory of wind-wave generation applied to wave forecasting[J]. Journal of Physical Oceanography, 1991, 21(11): 1631−1642. doi: 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2 [27] Ardhuin F, Chapron B, Collard F. Observation of swell dissipation across oceans[J]. Geophysical Research Letters, 2009, 36(6): L06607. [28] Hasselmann S, Hasselmann K, Allender J H, et al. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part Ⅱ: Parameterizations of the nonlinear energy transfer for application in wave models[J]. Journal of Physical Oceanography, 1985, 15(11): 1378−1391. doi: 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2 [29] Madsen P A, Sørensen O R. Bound waves and triad interactions in shallow water[J]. Ocean Engineering, 1993, 20(4): 359−388. doi: 10.1016/0029-8018(93)90002-Y [30] Tolman H L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents[J]. Journal of Physical Oceanography, 1991, 21(6): 782−797. doi: 10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2 [31] Battjes J A, Janssen H. Energy loss and set-up due to breaking of random waves[J]. Coastal Engineering Proceedings, 1978, 1(6): 32.