留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WAVEWATCH Ⅲ不同海冰源项的海浪模拟效果对比

苗琪 徐福敏 俞茂玲

苗琪,徐福敏,俞茂玲. WAVEWATCH Ⅲ不同海冰源项的海浪模拟效果对比[J]. 海洋学报,2020,42(9):22–29 doi: 10.3969/j.issn.0253-4193.2020.09.003
引用本文: 苗琪,徐福敏,俞茂玲. WAVEWATCH Ⅲ不同海冰源项的海浪模拟效果对比[J]. 海洋学报,2020,42(9):22–29 doi: 10.3969/j.issn.0253-4193.2020.09.003
Miao Qi,Xu Fumin,Yu Maoling. Comparison of wave simulation results of different ice dissipation source terms in WAVEWATCH Ⅲ[J]. Haiyang Xuebao,2020, 42(9):22–29 doi: 10.3969/j.issn.0253-4193.2020.09.003
Citation: Miao Qi,Xu Fumin,Yu Maoling. Comparison of wave simulation results of different ice dissipation source terms in WAVEWATCH Ⅲ[J]. Haiyang Xuebao,2020, 42(9):22–29 doi: 10.3969/j.issn.0253-4193.2020.09.003

WAVEWATCH Ⅲ不同海冰源项的海浪模拟效果对比

doi: 10.3969/j.issn.0253-4193.2020.09.003
基金项目: 江苏省研究生科研与实践创新计划项目(KYCX17_0456);中央高校基本科研业务费专项(2017B635X14)。
详细信息
    作者简介:

    苗琪(1994-),男,江苏省宜兴市人,助理工程师,从事河口海岸水动力研究。E-mail:miaoqi_2018@163.com

  • 中图分类号: P731.22

Comparison of wave simulation results of different ice dissipation source terms in WAVEWATCH Ⅲ

  • 摘要: 为了验证第三代海浪模式WAVEWATCH Ⅲ V5.16中不同海冰损耗源项在秋季波弗特海对海冰存在下海浪的模拟能力,建立自波弗特海至马更些河河口的两级嵌套海浪模型,对2014年8月1日至9月31日该海域北极风暴作用下的暴风浪有效波高进行模拟研究,并利用浮标实测数据对模拟结果进行对比分析。结果表明,在应用于大范围海域、缺乏海冰有效剪切模量、黏性系数等属性参数的前提下,离海冰较近、海浪能量受海冰控制作用较为明显的区域,各海冰源项中IC1源项表现最好,能够表现出更加符合波弗特海海域特定的冰情、冰况的能量耗散特征。
  • 图  1  SWIFT浮标漂移路径

    Fig.  1  The track of SWIFT drifting buoys

    图  2  两级嵌套模型研究区域示意图

    Fig.  2  Two-level nested computational domain

    图  3  CCMP V2.0风场风速验证

    Fig.  3  Validation of CCMP V2.0 wind speed

    图  4  不同海冰方案下两个SWIFT浮标有效波高对比

    Fig.  4  Comparison of simulated significant wave height by two SWIFT bouys of different ice source terms

    图  5  9月1−14日环绕SWIFT10的海冰

    Fig.  5  Sea ice pictures taken around SWIFT10 from September 1st to 14th

    表  1  SWIFT10有效波高模拟值与浮标值的均方根误差(RMSE)、相关系数(CC)和绝对平均误差(MAE)

    Tab.  1  RMSE, CC and MAE of observed and simulated significant wave heights in SWIFT10

    方案无冰IC0(25%)IC0(50%)IC1IC2IC3
    均方根误差/m0.6630.6310.5540.425 0.6200.615
    相关系数0.6620.6740.7820.834 0.6860.686
    绝对平均误差/m0.4370.4250.3280.303 0.3990.413
    下载: 导出CSV

    表  2  SWIFT11有效波高模拟值与浮标值的的均方根误差(RMSE)、相关系数(CC)和绝对平均误差(MAE)

    Tab.  2  RMSE, CC and MAE of observed and simulated significant wave heights in SWIFT11

    方案无冰IC0(25%)IC0(50%)IC1IC2IC3
    均方根误差/m0.4100.4200.6110.4470.400 0.421
    相关系数0.8850.8970.8420.919 0.9130.914
    绝对平均误差/m0.3310.3430.4680.3670.325 0.344
    下载: 导出CSV
  • [1] Kwok R, Untersteiner N. The thinning of Arctic sea ice[J]. Physics Today, 2011, 64(4): 36−41. doi: 10.1063/1.3580491
    [2] 柯长青, 彭海涛, 孙波, 等. 2002年−2011年北极海冰时空变化分析[J]. 遥感学报, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044

    Ke Changqing, Peng Haitao, Sun Bo, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011[J]. Journal of Remote Sensing, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044
    [3] 刘玥, 庞小平, 赵羲, 等. 基于海冰密集度遥感数据的波弗特海海冰时空变化研究[J]. 极地研究, 2018, 30(2): 161−172.

    Liu Yue, Pang Xiaoping, Zhao Xi, et al. Analysis of spatiotemporal variability of sea ice in the Beaufort Sea using passive microwave remote sensing data[J]. Chinese Journal of Polar Research, 2018, 30(2): 161−172.
    [4] Swail V R, Cardone V J, Callahan B, et al. The MSC Beaufort wind and wave reanalysis[C]//Proceedings of the Tenth International Workshop on Wave Hindcasting and Forecasting. North Shore, Oahu, Hawaii, USA: Environment Canada, U.S. Army Engineer, Research and Development Center's Coastal and Hydraulics Laboratory, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology, 2007: E1.
    [5] Lintern D G, Macdonald R W, Solomon S M, et al. Beaufort Sea storm and resuspension modeling[J]. Journal of Marine Systems, 2013, 127: 14−25. doi: 10.1016/j.jmarsys.2011.11.015
    [6] Xu Fumin, Perrie W, Solomon S. Shallow water dissipation processes for wind waves off the Mackenzie Delta[J]. Atmosphere-Ocean, 2013, 51(3): 296−308. doi: 10.1080/07055900.2013.794123
    [7] Hoque M A, Perrie W, Solomon S M. Evaluation of two spectral wave models for wave hindcasting in the Mackenzie Delta[J]. Applied Ocean Research, 2017, 62: 169−180. doi: 10.1016/j.apor.2016.11.009
    [8] 郑崇伟, 周林, 宋帅, 等. 1307号台风“苏力”台风浪数值模拟[J]. 厦门大学学报: 自然科学版, 2014, 53(2): 257−262.

    Zheng Chongwei, Zhou Lin, Song Shuai, et al. Simulation of the wave field caused by 1307 typhoon "Soulik"[J]. Journal of Xiamen University: Natural Science, 2014, 53(2): 257−262.
    [9] Huchet M, Leckler F, Filipot J F, et al. On the high resolution coastal applications with WAVEWATCH Ⅲ[C]//14th International Workshop on Wave Hindcasting and Forecasting, and 5th Coastal Hazard Symposium. Key West, Florida, USA: Environment Canada, U.S. Army Engineer, Research and Development Center's Coastal and Hydraulics Laboratory, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology , 2015: W2.
    [10] Seemanth M, Bhowmick S A, Kumar R, et al. Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH Ⅲ for Indian Ocean[J]. Ocean Engineering, 2016, 124: 252−273. doi: 10.1016/j.oceaneng.2016.07.023
    [11] 沈旭伟, 范力阳, 陈国平, 等. 台风“鲇鱼”作用下南海波浪场的数值模拟研究[J]. 水道港口, 2016, 37(4): 369−374. doi: 10.3969/j.issn.1005-8443.2016.04.012

    Shen Xuwei, Fan Liyang, Chen Guoping, et al. Numerical simulation studies of influence on wave field in the South China Sea caused by typhoon Megi[J]. Journal of Waterway and Harbor, 2016, 37(4): 369−374. doi: 10.3969/j.issn.1005-8443.2016.04.012
    [12] Erick W E, Thomson J, Shen H H, et al. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 7991−8007. doi: 10.1002/2016JC012251
    [13] Cheng Sukun, Rogers W E, Thomson J, et al. Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8770−8793. doi: 10.1002/2017JC013275
    [14] Komen G J, Cavaleri L, Donelan M, et al. Dynamics and Modelling of Ocean Waves[M]. Cambridge: Cambridge University Press, 1994: 554.
    [15] Liu A K, Mollo-Christensen E. Wave propagation in a solid ice pack[J]. Journal of Physical Oceanography, 1988, 18(11): 1702−1712. doi: 10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2
    [16] Liu A K, Holt B, Vachon P W. Wave propagation in the marginal ice zone: Model predictions and comparisons with buoy and synthetic aperture radar data[J]. Journal of Geophysical Research: Oceans, 1991, 96(C3): 4605−4621. doi: 10.1029/90JC02267
    [17] Ardhuin F, Collard F, Chapron B, et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015, 42(7): 2317−2325. doi: 10.1002/2014GL062940
    [18] Wang Ruixue, Shen H H. Gravity waves propagating into an ice-covered ocean: A viscoelastic model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): 24−36.
    [19] Wadhams P, Squire V A, Goodman D J, et al. The attenuation rates of ocean waves in the marginal ice zone[J]. Journal of Geophysical Research: Oceans, 1988, 93(C6): 6799−6818. doi: 10.1029/JC093iC06p06799
    [20] Meylan M H, Bennetts L G, Kohout A L. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone[J]. Geophysical Research Letters, 2014, 41(14): 5046−5051. doi: 10.1002/2014GL060809
    [21] Kohout A L, Meylan M H. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone[J]. Journal of Geophysical Research Oceans, 2008, 113(C9): C09016.
    [22] Ardhuin F, Boutin G, Stopa J, et al. Wave attenuation through an Arctic Marginal Ice Zone on 12 October 2015: 2: numerical modeling of waves and associated ice breakup[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5652−5668. doi: 10.1002/2018JC013784
    [23] Horvat C, Tziperman E. A prognostic model of the sea-ice floe size and thickness distribution[J]. The Cryosphere, 2015, 9(6): 2119−2134. doi: 10.5194/tc-9-2119-2015
    [24] Kohout A L, Williams M J M, Dean S M, et al. Storm-induced sea-ice breakup and the implications for ice extent[J]. Nature, 2014, 509(7502): 604−607. doi: 10.1038/nature13262
    [25] Li Jingkai, Kohout A L, Shen H H. Comparison of wave propagation through ice covers in calm and storm conditions[J]. Geophysical Research Letters, 2015, 42(14): 5935−5941. doi: 10.1002/2015GL064715
    [26] Janssen P A E M. Quasi-linear theory of wind-wave generation applied to wave forecasting[J]. Journal of Physical Oceanography, 1991, 21(11): 1631−1642. doi: 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
    [27] Ardhuin F, Chapron B, Collard F. Observation of swell dissipation across oceans[J]. Geophysical Research Letters, 2009, 36(6): L06607.
    [28] Hasselmann S, Hasselmann K, Allender J H, et al. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part Ⅱ: Parameterizations of the nonlinear energy transfer for application in wave models[J]. Journal of Physical Oceanography, 1985, 15(11): 1378−1391. doi: 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
    [29] Madsen P A, Sørensen O R. Bound waves and triad interactions in shallow water[J]. Ocean Engineering, 1993, 20(4): 359−388. doi: 10.1016/0029-8018(93)90002-Y
    [30] Tolman H L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents[J]. Journal of Physical Oceanography, 1991, 21(6): 782−797. doi: 10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2
    [31] Battjes J A, Janssen H. Energy loss and set-up due to breaking of random waves[J]. Coastal Engineering Proceedings, 1978, 1(6): 32.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  56
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2020-06-10
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回