留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华南休闲海滩沙坝触发的裂流风险及特征研究

张尧 刘旭楠 刘强 王斌 洪晓 周水华 张娟 孟潇洁 李锐 陶金波 王岗

张尧,刘旭楠,刘强,等. 华南休闲海滩沙坝触发的裂流风险及特征研究[J]. 海洋学报,2020,42(9):9–21 doi: 10.3969/j.issn.0253-4193.2020.09.002
引用本文: 张尧,刘旭楠,刘强,等. 华南休闲海滩沙坝触发的裂流风险及特征研究[J]. 海洋学报,2020,42(9):9–21 doi: 10.3969/j.issn.0253-4193.2020.09.002
Zhang Yao,Liu Xu’nan,Liu Qiang, et al. Study on the risk and characteristics of rip currents over sandbars at South China’s recreational beaches[J]. Haiyang Xuebao,2020, 42(9):9–21 doi: 10.3969/j.issn.0253-4193.2020.09.002
Citation: Zhang Yao,Liu Xu’nan,Liu Qiang, et al. Study on the risk and characteristics of rip currents over sandbars at South China’s recreational beaches[J]. Haiyang Xuebao,2020, 42(9):9–21 doi: 10.3969/j.issn.0253-4193.2020.09.002

华南休闲海滩沙坝触发的裂流风险及特征研究

doi: 10.3969/j.issn.0253-4193.2020.09.002
基金项目: 国家自然科学基金(51609043);自然资源部海洋减灾中心业务项目(2018AB005)。
详细信息
    作者简介:

    张尧(1988—),男,江苏省宿迁市人,博士,副研究员,从事计算水动力及海洋灾害研究。E-mail:yzhang@nmhms.org.cn

    通讯作者:

    王斌。E-mail:soawb@hotmail.com

  • 中图分类号: P731.23

Study on the risk and characteristics of rip currents over sandbars at South China’s recreational beaches

  • 摘要: 为应对频发的致命性海滩溺水事故,自然资源部开展了我国首次滨海旅游区裂流灾害技术调查,在华南地区发现大量滨海休闲海滩存在浅滩沙坝和裂流现象。作为全国调查的部分成果,本文应用多种方法研究了广东省3个热门海滩沙坝触发的裂流机理、特征和演变规律。地形动力计算和卫星影像显示了沙坝形态、岸线形状以及裂流的高度动态性,尤其在青澳湾裂流呈现非常规的反季节变化,冬季风险较高而夏季风险较低。在相位解析水动力数值模拟中,裂流表现出对沙坝形态、浪高、浪向的高度敏感性。沙坝间较宽间隙会产生尺寸较大的裂流区,但比起窄沟槽不一定伴随更强的流速。当大部分水流集中从邻近的较宽通道回流入海时,部分窄沟槽几乎没有裂流产生。裂流流速与浪高成正比与入射角成反比。数值模拟结果表明,当入射角达到10°~30°时,沿岸流会取代离岸流占主导地位。现场调查也验证了在低潮时,较浅的水深会放大水流和波浪的地形效应,导致裂流风险加剧。本文研究结果可为滨海旅游区裂流灾害的工程减缓措施和公共警示提供有益参考。未来将会持续开展针对特定岸线的长期观测,以为裂流预警报和风险管控积累足够的统计数据。
  • 图  1  华南3个研究目标海滩位置和形态示意图

    Fig.  1  Location and profiles of the 3 investigated beaches in the South China

    图  2  十里银滩的波浪月平均数据

    Fig.  2  Monthly wave statistics at the 10-mile Beach

    图  3  十里银滩的谷歌地图卫星影像(红色线段为100 m)

    a. 2016年11月6日;b. 2017年8月21日

    Fig.  3  Google Earth satellite images at the 10-mile Beach (the red line represents 100 m)

    a. November 6, 2016; b. August 21, 2017

    图  4  西涌海滩的波浪月平均数据

    Fig.  4  Monthly wave statistics at the Xichong Beach

    图  5  西涌海滩的谷歌地图卫星影像(红色线段为100米)

    a. 2013年12月30日;b. 2014年9月18日;c. 2015年8月25日;d. 2016年7月16日

    Fig.  5  Google Earth satellite images at the Xichong Beach (the red line represents 100 m)

    a. December 30, 2013; b. September 18, 2014; c. August 25, 2015; d. July 16, 2016

    图  6  青澳湾的波浪月平均数据

    Fig.  6  Monthly wave statistics at the Qing’ao Bay

    图  7  青澳湾的谷歌地图卫星影像(红色线段为100 m)

    a. 2010年8月5日;b. 2013年11月27日;c. 2015年8月23日;d. 2016年12月18日

    Fig.  7  Google Earth satelite images at the Qing’ao Bay (the red line represents 100 m)

    a. August 5, 2010; b. November 27, 2013; c. August 23, 2015; d. December 18, 2016

    图  8  十里银滩沙坝和裂流通道(a)及裂流头(b)航拍照片

    Fig.  8  Aerial photo of sandbars and rip channels (a), and rip head (b) at the 10-mile Beach

    图  9  2018年7月12日海陵岛十里银滩裂流彩染示踪试验视频截图(数模案例的2号通道)

    Fig.  9  Video snapshots of the dye-tracer in the rip current at channel 2 of the 10-mile Beach of Hailing Island on July 12, 2018

    图  10  数值模拟的十里银滩水深地形及沙坝裂流通道分布(a)和5组有效波高和平均流速的计算结果(b−f)

    b. 入射波高1.4 m,入射角0°;c. 入射波高1.2 m,入射角0°;d. 入射波高0.7 m,入射角0°;e. 入射波高0.7 m,入射角11.25°;f. 入射波高0.7 m,入射角33.75°

    Fig.  10  Bathymetry with sand bars and 4 rip channels in the simulated area at 10-mile Beach (a), and computed results of significant wave heights and averaged velocities for 5 cases (b−f)

    b. Hincident=1.4 m, θ = 0°; c. Hincident=1.2 m, θ = 0°; d.Hincident=0.7 m, θ = 0°; e. Hincident=0.7 m, θ = 11.25°; f. Hincident=0.7 m, θ = 33.75°

    表  1  基于地形动力学指标分析的滨海旅游海滩裂流风险等级表

    Tab.  1  Beach characteristics and rip risk level based on morphodynamic values

    海滩组别沙粒沉降参数潮浪参数海滩类型裂流风险
    反射型$ {{\varOmega }} $<2RTR<3完全反射型(R)
    $ {{\varOmega }} $<2RTR>7低潮台地型(LTT)
    $ {{\varOmega }} $<23≤RTR≤7低潮台地裂流型(LTTR)
    中间状态型2≤$ {\varOmega} $≤5RTR<3沿岸沙坝型(B)
    2≤$ {\varOmega} $≤53≤RTR≤7低潮冲流沙坝裂流型(LTBR)
    消散型$ {\varOmega} $>5RTR<3沙坝消散型(BD)
    $ {\varOmega} $>53≤RTR≤7无沙坝消散型(NBD)
    超消散型$ {\varOmega} $>2RTR>7平缓超消散型(UD)
    下载: 导出CSV

    表  2  十里银滩月平均裂流风险等级的地形动力模型计算结果

    Tab.  2  Monthly rip current risk at the 10-mile Beach calculated by the morphodynamic model

    月份RTR$ {{\varOmega }} $海滩类型风险等级
    11.910.9BD
    21.811.0BD
    32.111.4BD
    42.410.1BD
    52.310.3BD
    61.413.2BD
    71.713.0BD
    81.610.9BD
    92.49.5BD
    101.910.9BD
    111.612.2BD
    121.512.1BD
    下载: 导出CSV

    表  3  西涌海滩月平均裂流风险等级的地形动力模型计算结果

    Tab.  3  Monthly rip current risk at the Xichong Beach calculated by the morphodynamic model

    月份RTR$ {{\varOmega }} $海滩类型风险等级
    11.13.0B
    21.13.1B
    31.13.2B
    41.32.8B
    51.62.4B
    61.13.4B
    71.03.7B
    81.03.5B
    91.32.7B
    101.13.1B
    110.93.4B
    120.93.3B
    下载: 导出CSV

    表  4  青澳湾月平均裂流风险等级的地形动力模型计算结果

    Tab.  4  Monthly rip current risk at the Qing’ao Bay calculated by the morphodynamic model

    月份RTR$ {{\varOmega }} $海滩类型风险等级
    11.821.1BD
    22.119.0BD
    32.316.5BD
    42.714.3BD
    53.211.9NBD
    63.211.8NBD
    73.111.3NBD
    83.010.9NBD
    92.613.9BD
    101.921.4BD
    111.921.4BD
    121.921.4BD
    下载: 导出CSV

    表  5  不同模拟工况下的入射波浪条件

    Tab.  5  Incident wave conditions for the numerical simulation

    模拟工况入射波高/m波向周期/s相对岸线的入射角度/(°)
    11.4SE−SSE4.90
    21.2SE−SSE4.90
    30.7SE−SSE4.90
    40.7SSE4.911.25
    50.7S4.933.75
    下载: 导出CSV
  • [1] Dalrymple R A, MaCmahan J H, Reniers A J H M, et al. Rip currents[J]. Annual Review of Fluid Mechanics, 2011, 43(43): 551−581.
    [2] 王彦, 邹志利. 海岸裂流的研究进展及其展望[J]. 海洋学报, 2014, 36(5): 170−176.

    Wang Yan, Zou Zhili. Progress and prospect of rip currents[J]. Haiyang Xuebao, 2014, 36(5): 170−176.
    [3] Drozdzewski D, Shaw W, Dominey-Howes D, et al. Surveying rip current survivors: Preliminary insights into the experiences of being caught in rip currents[J]. Natural Hazards and Earth System Sciences, 2012, 12(4): 1201−1211. doi: 10.5194/nhess-12-1201-2012
    [4] Alvarez-Euacuria A, Orfila A, Olabarrieta M, et al. A nearshore wave and current operational forecasting system[J]. Journal of Coastal Research, 2010, 26(3): 503−509.
    [5] Austin M, Scott T, Brown J, et al. Temporal observations of rip current circulation on a macro-tidal beach[J]. Continental Shelf Research, 2010, 30(9): 1149−1165. doi: 10.1016/j.csr.2010.03.005
    [6] Benassai G, Aucelli P, Budillon G, et al. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation[J]. Natural Hazards and Earth System Sciences, 2017, 17(9): 1493−1503. doi: 10.5194/nhess-17-1493-2017
    [7] Macmahan J H, Thornton E B, Reniers A J H M. Rip current review[J]. Coastal Engineering, 2006, 53(2/3): 191−208.
    [8] Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [9] Wright L D, Short A D, Green M O. Short-term changes in the morphodynamic states of beaches and surf zones: An empirical predictive model[J]. Marine Geology, 1985, 62(3/4): 339−364.
    [10] Masselink G, Short A D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model[J]. Journal of Coastal Research, 1993, 9(3): 785−800.
    [11] Scott T, Masselink G, Russell P. Morphodynamic characteristics and classification of beaches in England and wales[J]. Marine Geology, 2011, 286(1/4): 1−20.
    [12] Li Zhiqiang. Rip current hazards in South China headland beaches[J]. Ocean & Coastal Management, 2016, 121: 23−32.
    [13] Dusek G, Seim H. A probabilistic rip current forecast model[J]. Journal of Coastal Research, 2013, 289(4): 909−925.
    [14] 王彦, 邹志利. 平直沙坝海岸叠加波浪的裂流试验[J]. 水科学进展, 2015, 26(1): 123−129.

    Wang Yan, Zou Zhili. Experimental study of rip currents by intersecting wave on barred beach[J]. Advances in Water Science, 2015, 26(1): 123−129.
    [15] 彭石, 邹志利. 海岸裂流的浮子示踪法实验测量[J]. 水动力学研究与进展, 2012, 26(6): 645−651.

    Peng Shi, Zou Zhili. Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics, 2012, 26(6): 645−651.
    [16] Haller M C, Dalrymple R A, Svendsen I A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research: Oceans, 2002, 107(C6): 3061. doi: 10.1029/2001JC000955
    [17] Kennedy A B, Thomas D. Drifter measurements in a laboratory rip current[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08005.
    [18] Kennedy A B, Zhang Y. The stability of wave-driven rip current circulation[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3): C03031.
    [19] Castelle B, Michallet H, Marieu V, et al. Laboratory experiment on rip current circulations over a moveable bed: Drifter measurements[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12008. doi: 10.1029/2010JC006343
    [20] Suanda S H, Feddersen F. A self-similar scaling for cross-shelf exchange driven by transient rip currents[J]. Geophysical Research Letters, 2015, 42(13): 5427−5434. doi: 10.1002/2015GL063944
    [21] Weir B, Uchiyama Y, Lane E M, et al. A vortex force analysis of the interaction of rip currents and surface gravity waves[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05001.
    [22] Marchesiello P, Benshila R, Almar R, et al. On tridimensional rip current modeling[J]. Ocean Modelling, 2015, 96: 36−48. doi: 10.1016/j.ocemod.2015.07.003
    [23] Yu J, Chen S Y. Hydrodynamic instability mechanism for rip currents[J]. Studies in Applied Mathematics, 2015, 135(2): 196−223. doi: 10.1111/sapm.12074
    [24] Zhang Chi, Zhang Qingyang, Zheng Jinhai, et al. Parameterization of nearshore wave front slope[J]. Coastal Engineering, 2017, 127: 80−87. doi: 10.1016/j.coastaleng.2017.06.008
    [25] Schmidt W E, Woodward B T, Millikan K S, et al. A GPS-tracked surf zone drifter[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(7): 1069−1075. doi: 10.1175/1460.1
    [26] McCarroll R J, Brander R W, Turner I L, et al. Lagrangian observations of circulation on an embayed beach with headland rip currents[J]. Marine Geology, 2014, 355: 173−188. doi: 10.1016/j.margeo.2014.05.020
    [27] Scott T, Austin M, Masselink G, et al. Dynamics of rip currents associated with groynes—field measurements, modelling and implications for beach safety[J]. Coastal Engineering, 2016, 107: 53−69. doi: 10.1016/j.coastaleng.2015.09.013
    [28] MacMahan J, Thornton B E. Low-cost handheld global positioning system for measuring surf-zone currents[J]. Journal of Coastal Research, 2009, 25(3): 744−754.
    [29] MacMahan J H, Thornton E B, Stanton T P, et al. RIPEX: observations of a rip current system[J]. Marine Geology, 2005, 218(1/4): 113−134.
    [30] Radermacher M, De Schipper M A, Reniers A J H M. Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry[J]. Coastal Engineering, 2018, 135: 66−76. doi: 10.1016/j.coastaleng.2018.01.007
    [31] Holman R, Haller M C. Remote sensing of the nearshore[J]. Annual Review of Marine Science, 2013, 5(1): 95−113. doi: 10.1146/annurev-marine-121211-172408
    [32] Yoon S B, Park W K, Choi J. Observation of rip current velocity at an accidental event by using video image analysis[J]. Journal of Coastal Research, 2014, 72(S): 16−21.
    [33] Haller M C, Honegger D, Catalán P A. Rip current observations via marine radar[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140(2): 115−124. doi: 10.1061/(ASCE)WW.1943-5460.0000229
    [34] 解鸣晓, 张玮. 近岸波生流运动三维数值模拟及验证[J]. 水科学进展, 2011, 22(3): 391−399.

    Xie Xiaoming, Zhang Wei. 3D numerical modeling of nearshore wave-induced currents[J]. Advances in Water Science, 2011, 22(3): 391−399.
    [35] 胡日军, 吴建政, Ping Dong, 等. 海岸沙坝横向迁移研究综述[J]. 水科学进展, 2016, 27(5): 784−791.

    Hu Rijun, Wu Jianzheng, Ping Dong, et al. A review of cross-shore migration of nearshore sandbar[J]. Advances in Water Science, 2016, 27(5): 784−791.
    [36] 房克照, 尹继伟, 邹志利. 单沟槽沙坝海岸的裂流实验研究[J]. 水动力学研究与进展, 2013, 28(3): 363−369.

    Fang Kezhao, Yin Jiwei, Zou Zhili. Experiment study on rip current of barred beach with a single channel[J]. Chinese Journal of Hydrodynamics, 2013, 28(3): 363−369.
    [37] 孟凡昌, 李本霞. 裂流的研究综述[J]. 海洋预报, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011

    Meng Fanchang, Li Benxia. Review on the study of the rip current[J]. Marine Forecasts, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011
    [38] Moulton M, Dusek G, Elgar S, et al. Comparison of rip current hazard likelihood forecasts with observed rip current speeds[J]. Weather and Forecasting, 2017, 32(4): 1659−1666. doi: 10.1175/WAF-D-17-0076.1
    [39] 张弛, 郑金海, 王义刚. 波浪作用下沙坝剖面形成过程的数值模拟[J]. 水科学进展, 2012, 23(1): 104−109.

    Zhang Chi, Zheng Jinhai, Wang Yigang. Numerical simulation of wave-induced sandbar formation[J]. Advances in Water Science, 2012, 23(1): 104−109.
    [40] Zheng Jinhai, Zhang Chi, Demirbilek Z, et al. Numerical study of sandbar migration under wave-undertow interaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140(2): 146−159. doi: 10.1061/(ASCE)WW.1943-5460.0000231
    [41] 房克照, 邹志利, 刘忠波. 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26(4): 479−486.

    Fang Kezhao, Zou Zhili, Liu Zhongbo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479−486.
    [42] Haas K A, Svendsen I A, Haller M C, et al. Quasi-three-dimensional modeling of rip current systems[J]. Journal of Geophysical Research: Oceans, 2003, 108(C7): 3217. doi: 10.1029/2002JC001355
    [43] Long J W, Özkan-Haller H T. Offshore controls on nearshore rip currents[J]. Journal of Geophysical Research: Oceans, 2005, 110(C12): C12007. doi: 10.1029/2005JC003018
    [44] Johnson D, Pattiaratchi C. Boussinesq modelling of transient rip currents[J]. Coastal Engineering, 2006, 53(5/6): 419−439.
    [45] Zhang Yao, Kennedy A B, Tomiczek T, et al. Validation of Boussinesq–Green–Naghdi modeling for surf zone hydrodynamics[J]. Ocean Engineering, 2016, 111: 299−309. doi: 10.1016/j.oceaneng.2015.11.004
    [46] Shi Fengyan, Kirby J T, Harris J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43−44: 36−51. doi: 10.1016/j.ocemod.2011.12.004
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  57
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-14
  • 修回日期:  2019-10-16
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回