留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海3个河口区底栖硅藻群落的时空变化特征

王珊珊 刘东艳 王玉珏 袁子能

王珊珊,刘东艳,王玉珏,等. 渤海3个河口区底栖硅藻群落的时空变化特征[J]. 海洋学报,2020,42(8):101–114 doi: 10.3969/j.issn.0253-4193.2020.08.009
引用本文: 王珊珊,刘东艳,王玉珏,等. 渤海3个河口区底栖硅藻群落的时空变化特征[J]. 海洋学报,2020,42(8):101–114 doi: 10.3969/j.issn.0253-4193.2020.08.009
Wang Shanshan,Liu Dongyan,Wang Yujue, et al. Temporal and spatial variations of benthic diatom communities at three estuaries in the Bohai Sea[J]. Haiyang Xuebao,2020, 42(8):101–114 doi: 10.3969/j.issn.0253-4193.2020.08.009
Citation: Wang Shanshan,Liu Dongyan,Wang Yujue, et al. Temporal and spatial variations of benthic diatom communities at three estuaries in the Bohai Sea[J]. Haiyang Xuebao,2020, 42(8):101–114 doi: 10.3969/j.issn.0253-4193.2020.08.009

渤海3个河口区底栖硅藻群落的时空变化特征

doi: 10.3969/j.issn.0253-4193.2020.08.009
基金项目: 科技基础性工作专项(2014FY210600)。
详细信息
    作者简介:

    王珊珊(1991-),女,山东省菏泽市人,研究方向为海洋生态学。E-mail:shanshanwang@yic.ac.cn

    通讯作者:

    刘东艳,女,研究员,主要从事海洋生态学研究。E-mail:dyliu@sklec.ecnu.edu.cn

  • 中图分类号: P714+.5;Q949.2

Temporal and spatial variations of benthic diatom communities at three estuaries in the Bohai Sea

  • 摘要: 底栖硅藻是河口泥滩系统中的重要初级生产者,其群落结构的时空变化可显著影响到河口底栖动物生产力。本研究选取渤海区域的大辽河口、汉沽河口和黄河口为研究对象,分析了泥滩中底栖硅藻群落结构的季节变化特征(2014−2016年)与空间差异,并探讨了环境因素的影响作用。结果表明,3个河口区底栖硅藻多样性和生物量高峰均出现在秋季,优势种存在显著季节演替特征;在空间上,大辽河口和汉沽河口的底栖硅藻生物量显著高于黄河口。底栖硅藻群落结构与多种环境因子的相关性分析表明,温度和营养盐浓度变化对底栖硅藻群落的季节性特征影响显著;河口沉积物的粒径、潮差与径流量可能是造成底栖硅藻群落空间差异的重要因素,黄河口较低的底栖硅藻生物量显著受限于较粗的沉积物粒径和显著的磷限制。
  • 图  1  采样站位分布

    Fig.  1  Distribution of the sampling sites

    图  2  表层沉积物底栖硅藻群落香农–威纳多样性指数(a)、硅藻丰度(b)与Chl a浓度(c) 的分布特征的分布特征

    Fig.  2  The spatial and temporal distributions of Shannon–Weaver Index (a), Dabs (b) and Chl a concentrations (c) in the surface sediments at three sampling locations

    图  3  3个采样点表层沉积物优势硅藻组成的时空变化特征(相对丰度>5%)

    Fig.  3  Temporal and spatial variations of dominant diatoms in surface sediments of three sampling locations (relative abundance > 5%)

    图  4  利用NMDS分析3个采样点各季节硅藻种群组成的相似性结果

    Fig.  4  The NMDS results for seasonal diatom community similarity at three sampling locations

    图  5  3个采样点PCA排序图

    Fig.  5  The scatter diagrams of PCA at three sampling locations

    图  6  3个采样点优势硅藻物种与环境因子的CCA排序

    Fig.  6  CCA biplot of dominant diatom species and environmental factors at three sampling locations

    表  1  3个河口周围的基本环境概况

    Tab.  1  Environmental overview at the three sampling estuaries

    采样点大辽河口汉沽河口黄河口
    经纬度122.1°N, 40.6°E118.0°N, 39.2°E118.9°N, 37.4°E
    年均温度/℃9.612.312.4
    年均降水量/mm650.0586.0647.0
    潮差/m2.42.21.0
    河流径流量/108 m3·a−177.0592.0
    人口密度/人·km−2858.0381.0146.0
    农田面积/km²72.7236.650.4
    污水排放量/108 t·a−11.08.42.1
    海水养殖面积/103 hm2·a−10.910.0104.2
    滩涂主要养殖种类对虾、海参南美白对虾贝类、海参
    沉积物类型粉砂质淤泥淤泥粉砂质淤泥
    下载: 导出CSV

    表  2  3个采样点环境因子(平均值±标准差)的季节变化特征

    Tab.  2  The seasonal variations of environment factors (mean±stdve) at three sampling locations

    区域 月份温度/℃降水量/mm盐度潮差/md50/μm粒径<63 μm /%DIN/μmol·L−1${\rm {PO}}_4^{3-} $-P/μmol·L−1${\rm {SiO}}_3^{2-} $-Si/μmol·L−1N/PN/SiSi/P
    大辽河口3月9.9±4.319.228.0±3.12.6±0.628.377.8123.6±58.60.4±0.215.1±8.7309.08.237.8
    4月16.4±0.2109.529.8±0.12.7±0.528.377.8239.3±108.81.0±0.134.5±7.7239.36.934.5
    6月27.3±1.0105.233.0±2.52.9±0.419.781.0229.0±47.42.7±3.643.3±7.284.85.316.0
    9月21.0±4.584.323.7±6.73.0±0.428.377.868.3±1.32.9±0.145.8±1.123.61.515.8
    汉沽河口3月7.9±0.2025.8±0.22.1±0.513.095.3156.5±42.52.6±1.321.2±7.960.27.48.2
    4月14.5±0.7117.328.6±4.22.2±0.513.095.3563.5±148.113.6±10.762.2±1.441.49.14.6
    6月20.3±0.2205.231.4±1.52.4±0.37.497.1294.7±91.31.4±1.352.1±14.4210.55.737.2
    9月23.6±2.8113.924.6±7.12.4±0.413.095.342.9±5.71.1±0.138.0±0.939.01.134.5
    黄河河口3月10.4±3.51.831.6±5.80.6±0.257.857.3128.2±93.20.5±0.115.2±1.1256.48.430.4
    4月16.3±3.5198.226.1±5.40.5±0.257.857.3180.2±136.20.3±0.320.3±8.8600.78.967.7
    6月25.3±0.5324.025.5±5.60.7±0.351.963.3110.7±25.40.4±0.229.1±9.0276.83.872.8
    9月22.8±1.1146.426.0±2.50.6±0.357.857.344.9±20.00.4±0.058.8±11.1112.30.8147.0
    下载: 导出CSV

    表  3  底栖硅藻群落和环境因子之间的皮尔森相关性分析

    Tab.  3  Pearson correlation analysis between benthic diatoms and environmental factors

    项目Chl a水温降水量粒径<63 μm潮差DIN${{\rm {PO}}_4^{3-} }$-P${{\rm {SiO}}_3^{2-}} $-Si
    香农−威纳指数皮尔逊相关性0.180.06−0.410.74**0.65*−0.090.230.30
    样本量/个1212121212121212
    硅藻丰度皮尔逊相关性−0.210.32−0.120.260.41−0.41−0.020.17
    样本量/个1212121212121212
    Chl a浓度皮尔逊相关性1−0.41−0.220.570.280.81**0.89**0.31
    样本量/个1212121212121212
      注:** 表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] Nellemann C, Corcoran E, Duarte C M, et al. Blue carbon: a rapid response assessment[R]. Arendal: United Nations Environment Programme, 2009.
    [2] Montagna P A, Blanchard G F, Dinet A. Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates[J]. Journal of Experimental Marine Biology and Ecology, 1995, 185(2): 149−165. doi: 10.1016/0022-0981(94)00138-4
    [3] de Winder B, Staats N, Stal L J, et al. Carbohydrate secretion by phototrophic communities in tidal sediments[J]. Journal of Sea Research, 1999, 42(2): 131−146. doi: 10.1016/S1385-1101(99)00021-0
    [4] Sawai Y, Horton B P, Kemp A C, et al. Relationships between diatoms and tidal environments in Oregon and Washington, USA[J]. Diatom Research, 2016, 31(1): 17−38. doi: 10.1080/0269249X.2015.1126359
    [5] Underwood G J C, Kromkamp J. Primary production by phytoplankton and microphytobenthos in estuaries[J]. Advances in Ecological Research, 1999, 29: 93−153. doi: 10.1016/S0065-2504(08)60192-0
    [6] Park J, Kwon B O, Kim M, et al. Microphytobenthos of Korean tidal flats: a review and analysis on floral distribution and tidal dynamics[J]. Ocean & Coastal Management, 2014, 102: 471−482.
    [7] Zehetner F. Does organic carbon sequestration in volcanic soils offset volcanic CO2 emissions?[J]. Quaternary Science Reviews, 2010, 29(11/12): 1313−1316.
    [8] Mcleod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560. doi: 10.1890/110004
    [9] Bridgham S D, Moore T R, Richardson C J, et al. Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. (2013)[J]. Landscape Ecology, 2014, 29(9): 1481−1485. doi: 10.1007/s10980-014-0067-2
    [10] 李凡. 海岸带陆海相互作用(LOICZ)研究及我们的策略[J]. 地球科学进展, 1996, 11(1): 19−23. doi: 10.3321/j.issn:1001-8166.1996.01.006

    Li Fan. Study on land-ocean interaction in the coastal zone and our strategy[J]. Advance in Earth Sciences, 1996, 11(1): 19−23. doi: 10.3321/j.issn:1001-8166.1996.01.006
    [11] 吴宇华. 海岸带研究的深远意义[J]. 地球信息科学学报, 1997(2): 55−56.

    Wu Yuhua. The profound significance of coastal zone research[J]. Journal of Geo-Information Science, 1997(2): 55−56.
    [12] 王润梅, 唐建辉, 黄国培, 等. 环渤海地区河流河口及海洋表层沉积物有机质特征和来源[J]. 海洋与湖沼, 2015, 46(3): 497−507. doi: 10.11693/hyhz20140800225

    Wang Runmei, Tang Jianhui, Huang Guopei, et al. Provenance of organic matter in estuarine and marine surface sediments around the Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 497−507. doi: 10.11693/hyhz20140800225
    [13] 周波, 温建平, 张岩岩. 渤海污染现状与治理对策研究[J]. 中国环境管理干部学院学报, 2006, 16(4): 70−73. doi: 10.3969/j.issn.1008-813X.2006.04.022

    Zhou Bo, Wen Jianping, Zhang Yanyan. Research on current pollution and management strategy of Bohai[J]. Journal of EMCC, 2006, 16(4): 70−73. doi: 10.3969/j.issn.1008-813X.2006.04.022
    [14] 郭慧丽, 王玉珏, 高伟明, 等. 我国典型潮间带不同形态氮的空间分布特征[J]. 海洋环境科学, 2016, 35(5): 678−684.

    Guo Huili, Wang Yujue, Gao Weiming, et al. Different forms of nitrogen in the typical intertidal zones in China[J]. Marine Environmental Science, 2016, 35(5): 678−684.
    [15] 王恩辉. 我国典型潮间带沉积物中氮污染状况及浮游细菌群落对氮污染的响应[D]. 烟台: 中国科学院烟台海岸带研究所, 2017.

    Wang Enhui. Nitrogen pollution in the surface sediments and communities of bacteriophankton response to nitrogen pollution among different intertidal zones[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2017.
    [16] Duarte C M, Middelburg J J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1−8. doi: 10.5194/bg-2-1-2005
    [17] 金元欢. 我国入海河口的基本特点[J]. 东海海洋, 1988, 6(3): 1−11.

    Jin Yuanhuan. The characteristics of estuaries in China[J]. Donghai Marine Science, 1988, 6(3): 1−11.
    [18] 赵敬瑛. 大辽河潮汐现状研究[J]. 水科学与工程技术, 2015(5): 11−13. doi: 10.3969/j.issn.1672-9900.2015.05.004

    Zhao Jingying. Study on the current situation of Daliaohe River tidal[J]. Water Sciences and Engineering Technology, 2015(5): 11−13. doi: 10.3969/j.issn.1672-9900.2015.05.004
    [19] 夏斌. 2005年夏季环渤海16条主要河流的污染状况及入海通量[D]. 青岛: 中国海洋大学, 2007.

    Xia Bin. Contaminative conditions of main sixteen rivers around Bohai Sea and pollutant flux flowing into sea in summer of 2005[D]. Qingdao: Ocean University of China, 2007.
    [20] Battarbee R W. Diatom analysis[C]//Berglund B E. Handbook of Holocene Palaeoecology and Palaeohydrology. London: Wiley and Sons Ltd., 1986: 527−570.
    [21] 金德祥, 陈金环, 黄凯歌. 中国海洋浮游硅藻类[M]. 上海: 上海科学技术出版社, 1965.

    Jin Dexiang, Chen Jinhuan, Huang Kaige. Planktonic Diatoms from China Sea[M]. Shanghai: Shanghai Science and Technology Press, 1965.
    [22] 金德祥, 程兆第, 林均民, 等. 中国海洋底栖硅藻类(上卷)[M]. 北京: 海洋出版社, 1982.

    Jin Dexiang, Chen Zhaodi, Lin Junmin, et al. China Marine Benthic Diatoms (The First Volume)[M]. Beijing: China Ocean Press, 1982.
    [23] 金德祥, 程兆第, 刘师成, 等. 中国海洋底栖硅藻类(下卷)[M]. 北京: 海洋出版社, 1992.

    Jin Dexiang, Cheng Zhaodi, Liu Shicheng, et al. China Marine Benthic Diatoms (The Second Volume)[M]. Beijing: China Ocean Press, 1992.
    [24] 程兆第, 高亚辉, Dickman M. 硅藻彩色图集[M]. 北京: 海洋出版社, 1996.

    Cheng Zhaodi, Gao Yahui, Dickman M. Colour Plates of the Diatoms[M]. Beijing: China Ocean Press, 1996.
    [25] 郭玉洁, 钱树本. 中国海藻志(第五卷)硅藻门(第一册)中心纲[M]. 北京: 科学出版社, 2003.

    Guo Yujie, Qian Shuben. Flora Algarum Marinarum Sinicarum (Tomus Ⅴ) Bacillariophyta No. 1 Centricae[M]. Beijing: Science Press, 2003.
    [26] Battarbee R W, Jones V J, Flower R J, et al. Diatoms[C]//Smol J P, Birks H J B, Last W M. Tracking Environmental Change Using Lake Sediments Vol. 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic Publishers, 2001.
    [27] 李万会. 潮滩湿地沉积物中叶绿素a浓度的变化特征及其与沉积物特性间的关系初探[D]. 上海: 华东师范大学, 2006.

    Li Wanhui. Primary study on relation between variation of chlorophyll a concentration and sediment grain size on an intertidal flat[D]. Shanghai: East China Normal University, 2006.
    [28] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937−968. doi: 10.1080/00288306.1970.10418211
    [29] 朱根海, 陈国通, 杨俊毅, 等. 南麂列岛海域微小型底栖藻类生态研究[J]. 东海海洋, 1996, 14(2): 26−34.

    Zhu Genhai, Chen Guotong, Yang Junyi, et al. Ecological study on benthic nano- and microalgae in the water area of Nanji Archipalego[J]. Donghai Marine Science, 1996, 14(2): 26−34.
    [30] 吴祥恩, 李超, 龚凌. 福建浮宫红树林区的硅藻组成研究[J]. 安徽农业科学, 2013, 41(7): 2985−2988. doi: 10.3969/j.issn.0517-6611.2013.07.068

    Wu Xiang’en, Li Chao, Gong Ling. Study on diatom composition of mangrove region at Jiulong River Estuary, Fujian Province[J]. Journal of Anhui Agricultural Sciences, 2013, 41(7): 2985−2988. doi: 10.3969/j.issn.0517-6611.2013.07.068
    [31] 杨俊鹏. 辽河口潮滩沉积物元素地球化学特征及其环境效应[D]. 北京: 中国地质大学, 2011.

    Yang Junpeng. Geochemical characteristics of the sediment elements and its environmental efficiencies in the Liao River Estuary[D]. Beijing: China University of Geosciences, 2011.
    [32] 刘琳, 毕乃双, 王厚杰, 等. 现代废黄河口表层沉积物的年代际空间分布与主控因素[J]. 海洋地质前沿, 2018, 34(10): 23−31.

    Liu Lin, Bi Naishuang, Wang Houjie, et al. Inter-decadal variations in surface sediment distribution patterns off the recently abandoned Huanghe River mouth and their key controlling factors[J]. Marine Geology Frontiers, 2018, 34(10): 23−31.
    [33] 张鹏, 邹立, 姚晓, 等. 黄河三角洲潮间带营养盐的分布特征及其影响因素[J]. 中国海洋大学学报, 2009, 39(S1): 381−388.

    Zhang Peng, Zou Li, Yao Xiao, et al. Nutrient distributions and influencing factors in the intertidal area of the Yellow River Delta[J]. Periodical of Ocean University of China, 2009, 39(S1): 381−388.
    [34] 孙慧慧. 黄河口邻近海域浮游植物群落结构时空变化及其对调水调沙的响应[D]. 烟台: 中国科学院烟台海岸带研究所, 2017.

    Sun Huihui. Temporal and spatial variations of phytoplankton community in response to the water-sediment regulation event in the adjacent sea of the Yellow River Estuary[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2017.
    [35] 张文亮, 刘泓, 张光玉, 等. 天津汉沽海域氮磷承载力评价方法研究[J]. 水道港口, 2014, 35(4): 453−458. doi: 10.3969/j.issn.1005-8443.2014.04.034

    Zhang Wenliang, Liu Hong, Zhang Guangyu, et al. Research on carrying capacity assessment method for inorganic nitrogen and phosphate in Tianjin Hangu marine waters[J]. Journal of Waterway and Harbor, 2014, 35(4): 453−458. doi: 10.3969/j.issn.1005-8443.2014.04.034
    [36] 甘志彬, 李新正, 王洪法, 等. 山东半岛宁津沿岸潮间带大型底栖动物生态学研究[J]. 海洋科学, 2016, 40(6): 41−48. doi: 10.11759/hykx20150907001

    Gan Zhibin, Li Xinzheng, Wang Hongfa, et al. Ecological characteristics of macrobenthos found in the intertidal zone of Ningjin, Shandong[J]. Marine Sciences, 2016, 40(6): 41−48. doi: 10.11759/hykx20150907001
    [37] 叶晟, 孔飞, 李宏俊, 等. 辽河口邻近海域小型底栖生物的空间分布及季节变化[J]. 海洋学报, 2017, 39(10): 78−89.

    Ye Sheng, Kong Fei, Li Hongjun, et al. Spatial distribution and season variation of meiobenthos community in the Liaohe Estuary[J]. Haiyang Xuebao, 2017, 39(10): 78−89.
    [38] Pilkaitytė R, Razinkovas A. Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic Lagoon[J]. Boreal Environment Research, 2007, 12(5): 551−559.
    [39] Jäger C G, Diehl S, Schmidt G M. Influence of water-column depth and mixing on phytoplankton biomass, community composition, and nutrients[J]. Limnology and Oceanography, 2008, 53(6): 2361−2373. doi: 10.4319/lo.2008.53.6.2361
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  42
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-10
  • 修回日期:  2019-10-28
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回