A 100-year reconstruction of typhoon events on the inner shelf of the East China Sea: Coupling of meteorological observations and sedimentary records
-
摘要: 未来全球变化可能带来极端事件的强度增加、频度提高,加之海面上升加快,给海岸带防灾减灾工作带来更新防护标准的课题。由于台风的器测记录时间较短,需要从其他载体寻找替代指标以延长台风记录的时间跨度,这样才能更好地估计极端事件的强度–频率关系。陆架泥质区的风暴事件沉积记录和历史文献中的有关灾害记录,是拓展台风记录的两个方向。本文试图通过台风观测记录与沉积记录的耦合,重建百年尺度东海内陆架泥质区的风暴事件沉积记录,并与气象灾害记载的台风暴潮成灾事件相印证,以期探讨陆架泥对台风事件的保存潜力,及其可能反映的台风信息(如路径和强度)。2018年在浙江温岭近海采集了2 m长的柱样沉积物(J1),通过多指标(粒径分布、D90、Zr/Fe、Sr/Al、Ca)综合识别出台风沉积事件;采用放射性同位素210Pb定年法确定沉积物的年代序列,将识别的台风沉积记录与器测台风记录通过时间标尺进行耦合分析。结果显示,J1的沉积速率约为1.1 cm/a,年代跨度大约是1836年至2018年;整根柱样共识别出25次台风沉积事件,其中气象观测时期(1950−2018年)有10次台风事件留下了沉积记录,这10次台风的平均风速与影响J1的所有台风平均风速比较接近,且大多数属于登陆浙闽、成灾较严重的III型和IV型台风。通过多变量综合分析,发现就J1而言,沉积记录中台风事件的保存潜力约为30%;另外,历史文献中记载的台风事件可能偏重于登陆、成灾的较强台风,因而文献记录的台风数量显著少于实际产生影响的台风数量。这些认识有助于更好地利用沉积记录中保存的台风事件拓展台风记录的时间跨度,也有助于指导未来的采样地点,以尽可能多地获得保存更完整的台风沉积记录。Abstract: Future global changes may increase the intensity and frequency of extreme events, coupled with the rapid rise in sea level, bringing the issue of updated protection standards to the coastal areas. Due to the short length of observational records, it is necessary to find other alternative records to extend typhoon records other than meteorological observations. The sedimentary records and historical documents provide alternative approaches to extend typhoon records. This study attempts to reconstruct typhoon events on a 100-year scale on the inner shelf of the East China Sea through coupling of meteorological observations and sedimentary records. This reconstruction is compared with the meteorological disaster records to explore the preservation potential, path and intensity of typhoon events in the shelf mud area. In May 2018, a 2 m Core J1 was collected in the offshore area of Zhejiang Province. Typhoon events were comprehensively identified by multiple indicators (grain size distribution, D90, Zr/Fe, Sr/Al and Ca). The radioisotope 210Pb dating method was used to determine the age model of Core J1. The results show that the sedimentation rate of Core J1 is about 1.1 cm/a, and the time span is about 1836 to 2018. 25 typhoon events are identified in Core J1 and 10 of which match the meteorological observation period (1950−2018). The average wind speed of the 10 typhoons is close to the one of all typhoons affecting Core J1, and most of them belong to the strong typhoons of type III and IV landing on Zhejiang Province and Fujian Province. Through multivariate comprehensive analysis, it is found that the preservation potential of typhoon events in sedimentary records is close to 30% for Core J1. In addition, the typhoon events recorded in historical documents may be biased towards stronger landing typhoons, thus the number of typhoons recorded in literatures is significantly less than that actually affected. The knowledge obtained here helps to not only make better use of sedimentary records to expand the time span of typhoon records, but also guide future sampling to obtain more complete typhoon sedimentary records.
-
图 7 J1的多指标台风层序识别
虚线为各参数的平均值,灰色条纹区域为异常层序。浅灰色S序列标号为台风层序、深灰色N序列标号为非台风层序
Fig. 7 Multi-indexes typhoon sequence identification of Core J1
The vertical dotted lines show the average values of each parameter, and the horizontal gray lines indicate the identified abnormal layers. Light gray lines with label “S” are typhoon records and dark gray layers with label “N” are non-typhoon records
图 8 1950年以来有器测记录时期J1(0~100 cm深度)的多指标台风层序识别图
天蓝色横条区域为器测时期(1950−2018年)异常层序。数字T1−T10代表10次台风沉积事件
Fig. 8 Multi-index typhoon deposits identified during meteorological observation period in Core J1 (0−100 cm)
The horizontal light blue stripes represent the abnormal layers during meteorological observation period (1950−2018). The numbers T1 to T10 represent 10 typhoon deposition events
表 1 1950−2000年相关参数数据
Tab. 1 Relevant parameter data from 1950 to 2000
时间跨度(年数) 识别出台风沉积
事件的数量影响J1点台风的
数量1990−2000年(10年) 3 7 1980−2000年(20年) 5 14 1970−2000年(30年) 8 21 1960−2000年(40年) 10 28 1950−2000年(50年) 10 33 表 2 1950−2018年在J1沉积记录中识别出的10次台风的相关参数
Tab. 2 Parameters of 10 typhoons identified in Core J1 from 1950 to 2018
沉积事件编号 210Pb测年 对应的气象记录 台风编号 台风类型 登陆地点 影响J1的时间 影响J1的风速/m·s−1 T1 2000年 0004(Kai-tak) Ⅲ型 台州 2000年7月10日 25.5 T2 1997年 9711(Winnie) Ⅲ型 温州 1997年8月18日 35.9 T3 1992年 9219(Ted) Ⅲ型 台州 1992年9月23日 20.7 T4 1989年 8920(Vera) Ⅲ型 台州 1989年9月15日 25.0 T5 1987年 8707(Alex) Ⅲ型 温州 1987年7月27日 20.3 T6 1978年 7811(Carmen) Ⅲ型 莆田 1978年8月13日 29.7 T7 1975年 7514(Doris) Ⅲ型 温州 1975年10月7日 25.0 T8 1972年 7209(Betty) Ⅲ型 乐清 1972年8月17日 26.9 T9 1966年 6616(Alice) Ⅳ型 宁德 1966年9月3日 23.1 T10 1964年 6405(Betty) Ⅱ型 − 1964年7月15日 32.0 注:−表示未登陆;1959年之后采用中央气象局台风编号;台风类型见图1。 -
[1] 温克刚, 席国耀, 徐文宁. 中国气象灾害大典·浙江卷[M]. 北京: 气象出版社, 2006.Wen Kegang, Xi Guoyao, Xu Wenning. Chinese Meteorological Disaster: Zhejiang Volume[M]. Beijing: China Meteorological Press, 2006. [2] Elsner J B, Liu K B. Examining the ENSO-typhoon hypothesis[J]. Climate Research, 2003, 25(1): 43−54. [3] Cazenave A, Le Cozannet G. Sea level rise and its coastal impacts[J]. Earth's Future, 2014, 2(2): 15−34. doi: 10.1002/2013EF000188 [4] 严钦尚. 论滨岸和浅海的风暴沉积[J]. 海洋与湖沼, 1984, 15(1): 14−20.Yan Qinshang. Overview of the storm-generated deposits on nearshore zone and open shelf[J]. Oceanologia et Limnologia Sinica, 1984, 15(1): 14−20. [5] Bi Lei, Yang Shouye, Zhao Yun, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) Estuary and inner shelf of the East China Sea[J]. Quaternary International, 2017, 441: 147−161. doi: 10.1016/j.quaint.2016.12.004 [6] Tian Yuan, Fan Dejiang, Zhang Xilin, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109−121. doi: 10.1016/j.margeo.2018.12.010 [7] 张志忠, 李双林, 董岩翔, 等. 浙江近岸海域沉积物沉积速率及地球化学[J]. 海洋地质与第四纪地质, 2005, 25(3): 15−24.Zhang Zhizhong, Li Shuanglin, Dong Yanxiang, et al. Deposition rate and geochemical characters of sediments in Zhejiang offshore[J]. Marine Geology & Quaternary Geology, 2005, 25(3): 15−24. [8] 朱业, 丁骏, 卢美, 等. 1949−2009年登陆和影响浙江的热带气旋分析[J]. 海洋预报, 2012, 29(2): 8−13. doi: 10.3969/j.issn.1003-0239.2012.02.002Zhu Ye, Ding Jun, Lu Mei, et al. Analysis of the tropical cyclones landing in Zhejiang Province during 1949−2009[J]. Marine Forecasts, 2012, 29(2): 8−13. doi: 10.3969/j.issn.1003-0239.2012.02.002 [9] 郭志刚, 杨作升, 曲艳慧, 等. 东海陆架泥质区沉积地球化学比较研究[J]. 沉积学报, 2000, 18(2): 284−289. doi: 10.3969/j.issn.1000-0550.2000.02.020Guo Zhigang, Yang Zuosheng, Qu Yanhui, et al. Study on comparison sedimentary geochemistry of mud area on East China Sea continental shelf[J]. Acta Sedimentologica Sinica, 2000, 18(2): 284−289. doi: 10.3969/j.issn.1000-0550.2000.02.020 [10] 杨作升, 陈晓辉. 百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨[J]. 第四纪研究, 2007, 27(5): 690−699. doi: 10.3321/j.issn:1001-7410.2007.05.010Yang Zuosheng, Chen Xiaohui. Centurial high resolution records of sediment grain-size variation in the mud area off the Changjiang (Yangtze River) Estuary and its influencial factors[J]. Quaternary Sciences, 2007, 27(5): 690−699. doi: 10.3321/j.issn:1001-7410.2007.05.010 [11] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63−85. [12] 刘升发, 石学法, 刘焱光, 等. 东海内陆架泥质区沉积速率[J]. 海洋地质与第四纪地质, 2009, 29(6): 1−7.Liu Shengfa, Shi Xuefa, Liu Yanguang, et al. Sedimentation rate of mud area in the East China Sea inner continental shelf[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 1−7. [13] 李军, 胡邦琦, 窦衍光, 等. 中国东部海域泥质沉积区现代沉积速率及其物源控制效应初探[J]. 地质论评, 2012, 58(4): 745−756. doi: 10.3969/j.issn.0371-5736.2012.04.015Li Jun, Hu Bangqi, Dou Yanguang, et al. Modern sedimentation rate, budget and supply of the muddy deposits in the East China Seas[J]. Geological Review, 2012, 58(4): 745−756. doi: 10.3969/j.issn.0371-5736.2012.04.015 [14] 田元. 近百年来东海内陆架泥质区事件沉积的识别和重建[D]. 青岛: 中国海洋大学, 2015.Tian Yuan. Recognition and reconstruction of event deposits from the mud area in the inner shelf of the East China Sea in the past 100 years[D]. Qingdao: Ocean University of China, 2015. [15] McCall P L, Robbins J A, Matisoff G. 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates[J]. Chemical Geology, 1984, 44(1/3): 33−65. [16] 张陆, 杨万裕, 高领花. 影响台州台风的特征分析[J]. 浙江气象, 2007, 28(3): 11−16. doi: 10.3969/j.issn.1004-5953.2007.03.003Zhang Lu, Yang Wanyu, Gao Linghua. Characteristics analysis of typhoon affecting Taizhou[J]. Journal of Zhejiang Meteorology, 2007, 28(3): 11−16. doi: 10.3969/j.issn.1004-5953.2007.03.003 [17] 赵鑫, 黄世昌. 浙东沿海“9711”台风波浪场数值模拟研究[J]. 浙江水利科技, 2006(3): 24−27. doi: 10.3969/j.issn.1008-701X.2006.03.008Zhao Xin, Huang Shichang. Research on numerical modeling of "9711" typhoon wave field in coastal area of East Zhejiang[J]. Zhejiang Hydrotechnics, 2006(3): 24−27. doi: 10.3969/j.issn.1008-701X.2006.03.008 [18] Jelesnianski C P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J]. Monthly Weather Review, 1965, 93(6): 343−358. doi: 10.1175/1520-0493(1993)093<0343:ANCOS>2.3.CO;2 [19] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937−968. doi: 10.1080/00288306.1970.10418211 [20] 石学法, 刘升发, 乔淑卿, 等. 中国东部近海沉积物地球化学: 分布特征、控制因素与古气候记录[J]. 矿物岩石地球化学通报, 2015, 34(5): 883−894. doi: 10.3969/j.issn.1007-2802.2015.05.001Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from Eastern China Seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 883−894. doi: 10.3969/j.issn.1007-2802.2015.05.001 [21] Jia Jianjun, Gao Jianhua, Cai Tinglu, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2−16. doi: 10.1016/j.margeo.2018.04.005 [22] 高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10): 141−160.Gao Shu, Jia Jianjun, Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 2019, 41(10): 141−160. [23] 赵一阳, 喻德科. 黄海沉积物地球化学分析[J]. 海洋与湖沼, 1983, 14(5): 432−446.Zhao Yiyang, Yu Deke. Geochemical analysis of the sediments of the Huanghai Sea[J]. Oceanologia et Limnologia Sinica, 1983, 14(5): 432−446. [24] Pouzet P, Maanan M, Schmidt S, et al. Recent marine deposits reconstruction of two depositional environments of the French Atlantic coast[C]//Proceedings of the19th EGU General Assembly. Vienna, Austria: EGU, 2017: 14341. [25] Karageorgis A P, Kaberi H, Price N B, et al. Chemical composition of short sediment cores from Thermaikos Gulf (Eastern Mediterranean): sediment accumulation rates, trawling and winnowing effects[J]. Continental Shelf Research, 2005, 25(19/20): 2456−2475. [26] 何易培. 浙江沿海及主要港口航行示意图[M]. 大连: 大连海事大学出版社, 2008.He Yipei. Zhejiang Coastal Navigation Diagram and Main Ports[M]. Dalian: Dalian Maritime University Press, 2008. [27] Liou Y C, Herbich J B. Sediment movement induced by ships in restricted waterways[R]. Texas: Texas A&M University, 1976: 76−209.