Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge
-
摘要: 综合大洋钻探计划(IODP) 334和344航次在U1381站位处的两个钻孔(A孔和C孔)获得了中美洲西海岸外科科斯脊基底拉斑玄武岩,对其岩浆过程开展研究可为理解其岩石成因提供重要依据。本文对科科斯脊玄武岩中斜长石斑晶和微晶进行了详细的原位主微量元素分析,结果表明,斜长石种属为培长石、拉长石及少量中长石。部分斜长石斑晶具有正环带结构;但多数斜长石斑晶不具有明显环带,仅从核部到边部存在微弱的成分变化。斜长石斑晶与微晶的微量元素差别较大:斜长石斑晶富集轻稀土和大离子亲石元素、亏损高场强元素,且具有明显的Eu正异常;斜长石微晶不相容元素含量通常高于斜长石斑晶。根据斜长石温度计计算获得斜长石斑晶结晶温度为1 050~1 253℃,斜长石微晶结晶温度为866~1 033℃。基于以上特征,推测斜长石斑晶核部是相对原始岩浆的产物,而斑晶边部以及微晶是演化岩浆的结晶产物。斜长石斑晶的成分变化及熔蚀麻点结构是由于岩浆补给及岩浆减压上升造成的。最后,本研究推测科科斯脊基底玄武岩来自于开放的岩浆房,且岩浆房内可能存在原始岩浆的不断注入及岩浆对流。Abstract: During the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 344, tholeiitic basalt basement samples of the Cocos Ridge offshore central America were drilled in holes U1381A and U1381C at Site U1381. Studying on these samples will provide some important clues for understanding their petrogenesis. In this study we carried out in-situ major and trace elements analysis for plagioclase phenocrysts and microlites hosted by these basalt samples. The results show that plagioclases are bytownite, labradorite, with a small number of andesine. Some of the plagioclase phenocrysts show positive compositional zoning, while others only have weak compositional changes from the core to the rim of the phenocrysts. The trace element compositions of plagioclase phenocrysts and microlites are quite different. The plagioclase phenocrysts are enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements, and have obvious positive Eu anomalies. The contents of most incompatible elements of microlites are higher than those of phenocrysts. We used the classical igneous plagioclase thermometer to calculate the crystallization temperature of plagioclase phenocrysts and microlites as follows, i.e., 1 050−1 253℃ for plagioclase phenocrysts, and 866−1 033℃ for plagioclase microlites. Finally, we suggest that the core of plagioclase phenocrysts is crystallized from earlier relatively primitive magma, while the rim of the phenocrysts and microlites are crystallization products of continuous evolved magma compositions. The corrosion structure and positive compositional zoning of plagioclase phenocrysts may be mainly caused by some processes such as upwelling decompression and magma recharging. We suggest that the Cocos Ridge basaltic magma was originated from a magma chamber with continuous injection and convection of primitive magma.
-
Key words:
- basaltic rocks /
- plagioclase /
- mineral chemistry /
- trace element /
- Cocos Ridge /
- magmatism
-
图 1 科科斯脊及邻近地区简要地质图及IODP U1381站位位置[2-3] (a),U1381A孔和C孔岩芯柱状简图(mbsf:海底以下深度,单位:m)[4-5] (b)
a 图中红色方框为取样区域,EPR:东太平洋海隆,CNS:科科斯-纳兹卡扩张中心。b 图中红色带括号数字指示样品位置,对应样品编号为:(1)1381A-14R2, (2)1381A-16R2, (3)1381A-18R2, (4)1381A-20R2, (5)1381A-26R1, (6)1381C-13X1。(1)~(5)来自U1381 A孔,(6)来自U1381 C孔
Fig. 1 Tectonic setting of the Cocos Ridge and the adjacent area[2-3] (a), schematic lithostratigraphic summary of holes U1381A and C[4-5](mbsf: meter below seafloor) (b)
In the figure a, the red box in the map refers to the Expedition 334 and 344 drilling area, EPR: Eastern Pacific Rise, CNS: Cocos-Nazca Spreading Center. The numbers in red brackets in the figure b indicate the position of the sample, and the corresponding sample number is (1)1381A-14R2, (2) 1381A-16R2, (3)1381A-18R2, (4)1381A-20R2, (5)1381A-26R1, (6)1381C-13X1. Of them, number (1)−(5) are from Hole U1381 A, and number (6) is from Hole U1381 C
图 2 典型斜长石矿物的背散射电子(BSE)图像
a. 样品1381A-14R2中斜长石斑晶;b. 样品1381A-16R2中斜长石斑晶;c-d. 样品1381C-13X1中斜长石斑晶;e. 样品1381A-14R2中斜长石微晶;f. 样品1381C-13X1基质中斜长石微晶。红色点为电子探针测试点,pl:斜长石;px:辉石
Fig. 2 Backscattering electron (BSE) images of representative plagioclases
a. Plagioclase (pl) phenocryst in sample 1381A-14R2; b. plagioclase phenocryst in sample 1381C-16R2; c-d. plagioclase phenocrysts in sample 1381C-13X1; e. plagioclase microlites in sample 1381A-14R2; f. plagioclase microlites in the matrix of sample 1381C-13X1. The red dots are electron probe test points; pl: plagioclase; px: pyroxene
图 4 U1381站位玄武岩中斜长石的稀土元素球粒陨石标准化图解(球粒陨石数据来自文献[31])
Fig. 4 Chondrite-normalized REE patterns of the plagioclases in basalts from Site U1381 (CI chondrite values cited from reference [31])
图 5 U1381站位玄武岩中斜长石原始地幔标准化蛛网图(原始地幔数据来自于文献[32])
Fig. 5 Primitive mantle normalized trace element spidergram of the plagioclases in basalts from Site U1381(primitive mantle values after reference [32])
表 1 斜长石电子探针分析平均组分(wt%)
Tab. 1 EPMA compositions (average values, in wt %) of plagioclases
航次 站位 孔号 岩心标号 段/cm 样品号 斑晶/微晶 点数 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeOT K2O NiO CaO TiO2 Total An Ab Or 334 U1381 A 14 136~139 1381A-14R2 斑晶 12 AVE 1.45 0.23 34.40 46.95 0.01 0.01 0.46 0.02 0.01 17.70 0.03 101.26 86.97 12.90 0.12 STD 0.212 0.045 0.562 0.608 0.008 0.013 0.025 0.011 0.010 0.432 0.017 0.385 1.933 1.899 0.063 微晶 7 AVE 3.48 0.29 30.59 50.72 0.01 0.01 0.74 0.07 0.02 13.92 0.06 99.92 68.56 31.02 0.41 STD 0.577 0.045 1.029 1.213 0.009 0.019 0.211 0.026 0.020 0.964 0.036 1.486 5.044 4.908 0.153 U1381 A 16 134~137 1381A-16R2 斑晶 11 AVE 3.43 0.15 31.09 50.13 0.01 0.02 0.37 0.07 0.01 14.08 0.06 99.42 69.28 30.32 0.40 STD 0.702 0.052 1.172 1.619 0.004 0.018 0.205 0.040 0.025 1.315 0.050 0.744 6.409 6.196 0.234 微晶 7 AVE 5.19 0.16 28.05 53.91 0.00 0.02 0.73 0.12 0.02 11.03 0.09 99.32 53.63 45.67 0.70 STD 0.702 0.052 1.172 1.619 0.004 0.018 0.205 0.040 0.025 1.315 0.050 0.744 6.409 6.196 0.234 U1381 A 18 1~4 1381A-18R2 微晶 5 AVE 4.28 0.17 29.30 51.90 0.02 0.02 0.41 0.09 0.00 12.44 0.07 98.71 61.42 38.07 0.51 STD 0.700 0.062 0.814 1.361 0.015 0.038 0.195 0.022 0.008 0.946 0.020 0.774 5.684 5.597 0.120 U1381 A 20 115~118 1381A-20R2 微晶 11 AVE 4.89 0.12 28.47 54.16 0.01 0.01 0.54 0.11 0.01 11.31 0.07 99.71 55.69 43.66 0.65 STD 0.840 0.059 1.523 2.690 0.009 0.012 0.179 0.052 0.011 1.708 0.035 1.304 8.101 7.793 0.315 U1381 A 26 80~83 1381A-26R1 斑晶 5 AVE 2.03 0.21 32.97 46.93 0.01 0.03 0.33 0.05 0.01 16.31 0.02 98.89 81.40 18.33 0.27 STD 0.788 0.036 1.497 2.082 0.011 0.018 0.124 0.019 0.020 1.460 0.024 0.211 7.253 7.148 0.113 微晶 5 AVE 4.60 0.18 28.88 52.82 0.01 0.02 0.67 0.12 0.00 12.01 0.09 99.42 58.59 40.68 0.73 STD 0.328 0.042 0.878 0.782 0.017 0.036 0.236 0.030 0.006 0.771 0.048 0.933 3.307 3.172 0.177 344 U1381 C 13 11~16 1381C-13X1 斑晶 18 AVE 2.00 0.26 33.26 47.78 0.02 0.01 0.43 0.03 0.00 16.59 0.03 100.42 81.92 17.89 0.20 STD 0.686 0.036 1.335 1.500 0.016 0.019 0.102 0.019 0.008 1.329 0.023 1.159 6.316 6.215 0.114 微晶 8 AVE 3.79 0.26 30.01 51.73 0.02 0.04 0.61 0.09 0.01 13.30 0.07 99.92 65.66 33.83 0.51 STD 0.587 0.060 0.969 0.974 0.028 0.038 0.193 0.029 0.016 1.086 0.045 1.465 5.336 5.202 0.173 注:FeOT为以FeO表示全铁含量;AVE表示平均值,STD表示标准偏差。 表 2 典型斜长石斑晶电子探针分析组分(wt%)
Tab. 2 EPMA compositions (in wt %) of typical plagioclase phenocrysts
矿物号 位置 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeOT K2O NiO CaO TiO2 Total An Ab Or 种属 1381A-14R2-pl-04 1 1.80 0.31 33.44 47.61 0.02 0.00 0.51 0.03 0.02 17.12 0.04 100.89 83.89 15.92 0.18 培长石 2 1.71 0.32 33.92 48.13 0.00 0.01 0.44 0.03 0.01 17.00 0.04 101.61 84.42 15.39 0.18 培长石 3 1.87 0.26 33.14 47.91 0.01 0.00 0.47 0.03 0.00 16.85 0.03 100.56 83.15 16.70 0.15 培长石 4 1.29 0.23 34.47 46.47 0.01 0.00 0.47 0.00 0.02 17.96 0.00 100.92 88.48 11.51 0.01 培长石 5 1.47 0.19 34.65 47.18 0.01 0.00 0.46 0.03 0.00 17.71 0.02 101.74 86.75 13.06 0.18 培长石 6 1.37 0.25 34.43 46.94 0.02 0.00 0.42 0.02 0.02 17.70 0.04 101.21 87.62 12.27 0.11 培长石 1381A-16R2-pl-01 1 3.67 0.24 30.67 50.31 0.00 0.00 0.41 0.05 0.02 13.54 0.09 99.01 66.90 32.80 0.29 拉长石 2 5.17 0.12 28.67 53.92 0.00 0.00 0.38 0.12 0.03 11.11 0.12 99.63 53.93 45.40 0.67 拉长石 3 6.59 0.09 26.20 56.75 0.00 0.00 0.31 0.18 0.02 8.87 0.11 99.11 42.24 56.76 1.00 中长石 1381C-13X1-pl-01 1 1.82 0.25 33.87 47.16 0.04 0.01 0.46 0.04 0.03 17.43 0.02 101.11 83.95 15.84 0.21 培长石 2 1.67 0.26 33.91 47.61 0.01 0.01 0.54 0.02 0.00 17.42 0.01 101.47 85.12 14.76 0.12 培长石 3 1.82 0.23 34.04 47.65 0.03 0.03 0.47 0.02 0.00 17.02 0.04 101.34 83.69 16.20 0.11 培长石 4 1.58 0.25 33.97 47.02 0.00 0.00 0.59 0.03 0.00 17.59 0.06 101.09 85.87 13.96 0.16 培长石 5 1.54 0.22 34.05 46.83 0.01 0.01 0.57 0.02 0.00 17.45 0.01 100.72 86.15 13.75 0.10 培长石 6 2.57 0.35 32.03 49.50 0.04 0.00 0.53 0.05 0.00 15.48 0.05 100.61 76.63 23.05 0.31 培长石 1381C-13X1-pl-06 1 1.49 0.27 34.01 45.40 0.04 0.00 0.19 0.04 0.00 17.20 0.00 98.63 86.28 13.49 0.23 培长石 2 1.45 0.22 33.98 45.00 0.02 0.00 0.29 0.02 0.01 17.05 0.09 98.12 86.53 13.35 0.11 培长石 3 3.25 0.26 30.93 49.14 0.00 0.00 0.37 0.05 0.00 14.40 0.01 98.40 70.79 28.93 0.28 培长石 注:FeOT为以FeO表示全铁含量。“位置”列数字对应的测试点位置见图2。 表 3 斜长石特征微量元素含量(10−6)
Tab. 3 Representative trace elements contents (10−6) of plagioclases
航次 站位 孔号 岩心标号 段/cm 样品号 测点号 斑晶/微晶 位置 An La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 334 U1381 A 14 136~139 1381A-14R2 1381A-14R2-pl-04-1 斑晶 核 83.89 0.369 0.682 0.070 0.403 0.031 0.170 0.057 0.005 0.034 0.006 0.013 0.001 0.017 0.003 1381A-14R2-pl-04-2 斑晶 核 84.42 0.317 0.566 0.063 0.301 0.056 0.158 0.043 0.003 0.019 0.005 0.007 0.004 0.013 0.003 1381A-14R2-pl-04-3 斑晶 幔 83.15 0.360 0.720 0.085 0.432 0.047 0.140 0.064 0.007 0.044 0.006 0.026 0.004 0.012 0.002 1381A-14R2-pl-04-4 斑晶 幔 88.48 0.320 0.647 0.066 0.328 0.041 0.167 0.042 0.003 0.032 0.006 0.013 0.004 0.008 0.003 1381A-14R2-pl-04-5 斑晶 边 86.75 0.282 0.522 0.050 0.335 0.029 0.157 0.034 0.005 0.024 0.002 0.026 0.004 0.009 0.002 1381A-14R2-pl-04-6 斑晶 边 87.62 0.246 0.472 0.058 0.283 0.029 0.171 0.033 0.003 0.020 0.005 0.012 0.003 0.012 0.002 1381A-14R2-pl-07 微晶 71.21 0.737 1.393 0.180 0.888 0.209 0.277 0.224 0.044 0.318 0.072 0.209 0.027 0.229 0.035 1381A-14R2-pl-08 微晶 62.81 4.990 11.880 1.509 8.130 1.885 0.758 2.606 0.413 2.930 0.649 2.389 0.269 1.796 0.267 1381A-14R2-pl-09 微晶 76.18 19.350 44.740 5.850 31.170 7.740 2.490 9.830 1.575 10.980 2.328 6.910 0.979 6.320 0.965 U1381 A 20 115~118 1381A-20R2 1381A-20R2-pl-07 微晶 45.73 0.649 1.193 0.122 0.669 0.106 0.991 0.078 0.012 0.070 0.014 0.054 0.010 0.066 0.007 1381A-20R2-pl-09 微晶 40.82 0.862 1.489 0.148 0.821 0.046 2.073 0.032 0.012 0.034 0.004 0.011 0.003 0.012 0.002 1381A-20R2-pl-11 微晶 52.29 0.556 1.028 0.115 0.605 0.082 0.512 0.044 0.007 0.030 0.004 0.044 0.004 0.014 0.004 1381A-20R2-pl-10 微晶 63.90 0.457 0.823 0.092 0.541 0.120 0.409 0.066 0.005 0.047 0.008 0.018 0.002 0.013 0.004 344 U1381 C 13 11~16 1381C-13X1 1381C-13X1-pl-01-1 斑晶 核 83.95 0.307 0.666 0.071 0.380 0.045 0.172 0.048 0.009 0.039 0.009 0.018 0.003 0.014 0.002 1381C-13X1-pl-01-2 斑晶 核 85.12 0.315 0.525 0.063 0.308 0.073 0.167 0.053 0.007 0.022 0.006 0.015 0.004 0.014 0.004 1381C-13X1-pl-01-3 斑晶 幔 83.69 0.293 0.515 0.077 0.323 0.055 0.190 0.024 0.005 0.025 0.009 0.018 0.003 0.008 0.004 1381C-13X1-pl-01-4 斑晶 幔 85.87 0.261 0.615 0.070 0.340 0.032 0.177 0.048 0.005 0.042 0.003 0.011 0.003 0.015 0.003 1381C-13X1-pl-01-5 斑晶 边 86.15 0.281 0.558 0.068 0.353 0.067 0.189 0.038 0.004 0.024 0.005 0.011 0.003 0.016 0.004 1381C-13X1-pl-01-6 斑晶 边 76.63 0.288 0.608 0.061 0.330 0.036 0.151 0.047 0.006 0.016 0.006 0.017 0.004 0.011 0.003 1381C-13X1-pl-14 微晶 73.53 2.987 6.830 0.913 4.500 0.897 0.594 0.909 0.161 1.080 0.199 0.561 0.083 0.469 0.063 1381C-13X1-pl-12 微晶 69.12 0.454 0.780 0.092 0.480 0.059 0.220 0.076 0.011 0.048 0.014 0.012 0.002 0.016 0.005 1381C-13X1-pl-15 微晶 68.47 0.391 0.660 0.065 0.367 0.085 0.173 0.048 0.006 0.030 0.003 0.012 0.003 0.012 0.005 续表3 测点号 ∑REE LREE/HREE δEu (La/Yb)N Rb Sr Y Zr Nb Cs Ba Hf Ta Pb Th U LILEs HFSEs Nb/Ta Zr/Hf 1381A-14R2-pl-04-1 1.86 12.72 12.18 14.75 0.152 97.000 0.162 0.400 0.010 0.027 12.270 0.011 0.004 0.058 0.001 0.001 109.51 0.59 2.46 35.09 1381A-14R2-pl-04-2 1.56 15.11 9.41 17.23 0.061 99.120 0.076 0.380 0.008 0.027 12.270 0.008 0.004 0.020 0.001 0.002 111.50 0.48 2.32 46.91 1381A-14R2-pl-04-3 1.95 10.86 7.81 21.27 0.176 99.400 0.181 0.370 0.038 0.027 12.580 0.011 0.003 0.044 0.004 0.002 112.23 0.61 14.28 35.24 1381A-14R2-pl-04-4 1.68 14.06 12.12 26.19 0.060 96.870 0.090 0.370 0.018 0.026 10.680 0.011 0.005 0.043 0.002 0.003 107.68 0.50 3.79 35.24 1381A-14R2-pl-04-5 1.48 12.94 15.07 20.82 0.058 96.730 0.100 0.350 0.014 0.022 15.730 0.007 0.003 0.059 0.002 0.001 112.60 0.48 5.35 48.61 1381A-14R2-pl-04-6 1.35 14.06 16.84 14.04 0.276 95.200 0.085 0.380 0.008 0.026 14.730 0.015 0.003 0.068 0.000 0.000 110.30 0.49 2.63 24.68 1381A-14R2-pl-07 4.84 3.18 3.88 2.19 3.490 107.740 1.883 11.210 0.596 0.031 38.450 0.254 0.033 0.257 0.024 0.024 149.97 14.02 18.23 44.13 1381A-14R2-pl-08 40.47 2.58 1.04 1.89 10.250 62.640 18.950 49.050 4.620 0.349 23.490 1.489 0.336 1.602 0.346 0.142 98.33 74.93 13.75 32.94 1381A-14R2-pl-09 151.23 2.79 0.87 2.08 5.340 101.560 71.290 109.130 20.760 0.109 44.380 3.029 1.114 1.420 1.537 0.516 152.81 207.38 18.64 36.03 1381A-20R2-pl-07 4.04 12.07 31.77 6.73 0.793 139.010 0.353 1.420 0.035 0.059 45.390 0.028 0.008 1.520 0.004 0.004 186.77 1.85 4.16 51.64 1381A-20R2-pl-09 5.55 49.20 155.65 50.92 0.346 157.240 0.127 0.770 0.009 0.024 100.990 0.013 0.005 0.235 0.003 0.003 258.83 0.93 2.09 61.60 1381A-20R2-pl-11 3.05 19.20 23.46 26.23 0.193 128.750 0.181 0.360 0.008 0.026 27.570 0.013 0.005 0.162 0.004 0.002 156.70 0.57 1.74 27.69 1381A-20R2-pl-10 2.61 14.95 12.74 24.07 0.277 120.840 0.185 0.390 0.011 0.027 22.530 0.008 0.004 0.173 0.004 0.003 143.85 0.61 2.52 48.15 1381C-13X1-pl-01-1 1.78 11.69 11.19 15.00 0.109 101.780 0.163 0.480 0.061 0.030 11.580 0.019 0.006 0.049 0.007 0.005 113.55 0.74 11.16 24.74 1381C-13X1-pl-01-2 1.58 11.65 7.81 15.39 0.070 98.270 0.128 0.450 0.015 0.029 10.850 0.015 0.006 0.029 0.005 0.004 109.25 0.62 2.35 29.80 1381C-13X1-pl-01-3 1.55 15.15 13.66 24.57 0.070 101.200 0.110 0.560 0.011 0.030 11.000 0.014 0.003 0.049 0.002 0.003 112.35 0.70 3.56 40.88 1381C-13X1-pl-01-4 1.62 11.56 13.79 11.51 0.394 100.130 0.104 0.470 0.027 0.030 11.180 0.021 0.005 0.084 0.003 0.002 111.82 0.63 5.96 22.27 1381C-13X1-pl-01-5 1.62 14.60 10.46 11.78 0.069 102.430 0.143 0.440 0.023 0.029 10.610 0.012 0.005 0.047 0.005 0.002 113.18 0.63 4.42 36.97 1381C-13X1-pl-01-6 1.58 13.64 11.23 17.47 0.196 101.000 0.125 0.520 0.023 0.027 11.790 0.014 0.004 0.144 0.004 0.003 113.16 0.69 5.28 36.11 1381C-13X1-pl-14 20.25 4.74 1.99 4.33 1.689 115.810 5.510 7.940 1.501 0.070 50.150 0.220 0.089 0.445 0.166 0.104 168.16 15.53 16.83 36.09 1381C-13X1-pl-12 2.27 11.28 10.00 19.04 0.197 103.420 0.249 0.430 0.045 0.024 18.490 0.011 0.007 0.139 0.004 0.002 122.27 0.75 6.91 38.05 1381C-13X1-pl-15 1.86 14.71 7.56 21.77 0.381 99.170 0.135 0.420 0.012 0.024 19.160 0.017 0.004 0.122 0.003 0.004 118.86 0.59 2.98 24.14 注:δEu、(La/Yb)N为球粒陨石[31]标准化计算的结果。 表 4 斜长石结晶温度范围
Tab. 4 Crystallization temperatures of plagioclases
样品号 斑晶/微晶 测点数 温度/℃ ${P_{{{\rm{H}}_{\rm{2}}}{\rm{O}}}}$=0.5×108 Pa ${P_{{{\rm{H}}_{\rm{2}}}{\rm{O}}}}$=1.0×108 Pa 1381A-14R2 斑晶 12 957~1 044 1 114~1 194 微晶 7 866~887 1 037~1 055 1381A-16R2 斑晶 11 903~1 119 1 050~1 253 微晶 7 926~988 1 071~1 128 1381A-18R2 微晶 5 941~954 1 089~1 101 1381A-20R2 微晶 11 878~986 1 030~1 128 1381A-26R1 斑晶 5 939~1 067 1 090~1 209 微晶 5 943~952 1 094~1 102 1381C-13X1 斑晶 18 1 019~1 121 1 149~1 249 微晶 8 1 021~1 033 1 151~1 163 注:温度列加粗的数据为实际选用的数据。 -
[1] Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42−43. doi: 10.1038/230042a0 [2] Gazel E, Carr M J, Hoernle K, et al. Galapagos‐OIB signature in southern Central America: mantle refertilization by arc-hot spot interaction[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02S11. [3] Harris R N, Sakaguchi A, Petronotis K, et al. Expedition 344 summary[R/OL]. (2013-12-11)[2019-03-25]. http://publications.iodp.org/proceedings/344/101/101_.htm. [4] Expedition 334 Scientists. Site U1381[R/OL]. (2012-4-12)[2019-03-25]. http://publications.iodp.org/proceedings/334/106/106_.htm. [5] Harris R N, Sakaguchi A, Petronotis K, et al. Input Site U1381[R/OL]. (2013-12-11) [2019-03-25]. http://publication s.iodp.org/proceedings/344/103/103_.htm. [6] Werner R, Hoernle K, Barckhausen U, et al. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m. y.: constraints from morphology, geochemistry, and magnetic anomalies[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 1108. [7] Harpp K S, Wanless V D, Otto R H, et al. The Cocos and carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction[J]. Journal of Petrology, 2005, 46(1): 109−133. doi: 10.1093/petrology/egh064 [8] 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107−123.Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Haiyang Xuebao, 2014, 36(5): 107−123. [9] Ranero C R, von Huene R. Subduction erosion along the Middle America convergent margin[J]. Nature, 2000, 404(6779): 748−752. doi: 10.1038/35008046 [10] Hey R. Tectonic evolution of the Cocos-Nazca spreading center[J]. GSA Bulletin, 1977, 88(12): 1404−1420. [11] Werner R, Hoernle K, van den Bogaard P, et al. Drowned 14-m. y. -old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models[J]. Geology, 1999, 27(6): 499−502. doi: 10.1130/0091-7613(1999)027<0499:DMYOGP>2.3.CO;2 [12] Barckhausen U, Ranero C R, von Huene R, et al. Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B9): 19207−19220. doi: 10.1029/2001JB000238 [13] Walther C H E. The crustal structure of the Cocos Ridge off Costa Rica[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B3): 2136. [14] Brandstätter J, Kurz W, Richoz S, et al. The origin of carbonate veins within the sedimentary cover and igneous rocks of the Cocos Ridge: results from IODP Hole U1414A[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(10): 3721−3738. doi: 10.1029/2018GC007729 [15] 李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728−736. doi: 10.11867/j.issn.1001-8166.2013.06.0728Li Yongxiang, Yan Quanshu, Zhao Xixi, et al. Research on seismogenesis at erosive convergent margins: report from IODP expedition 344[J]. Advances in Earth Science, 2013, 28(6): 728−736. doi: 10.11867/j.issn.1001-8166.2013.06.0728 [16] van Andel T H, Heath G R, Bennett R H, et al. Site 158[R/OL]. [2019-03-25]. http://deepseadrilling.org/16/volume/dsdp16_05.pdf. [17] Yang H J, Frey F A, Clague D A, et al. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for magmatic processes within Hawaiian rift zones[J]. Contributions to Mineralogy and Petrology, 1999, 135(4): 355−372. doi: 10.1007/s004100050517 [18] Viccaro M, Giacomoni P P, Ferlito C, et al. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts[J]. Lithos, 2010, 116(1/2): 77−91. [19] 罗照华, 杨宗锋, 代耕, 等. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1): 176−181. doi: 10.3969/j.issn.1000-3657.2013.01.012Luo Zhaohua, Yang Zongfeng, Dai Geng, et al. Crystal populations of igneous rocks and their implications in genetic mineralogy[J]. Geology in China, 2013, 40(1): 176−181. doi: 10.3969/j.issn.1000-3657.2013.01.012 [20] Streck M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 595−622. doi: 10.2138/rmg.2008.69.15 [21] Jerram D A, Martin V M. Understanding crystal populations and their significance through the magma plumbing system[J]. Geological Society, London, Special Publications, 2008, 304: 133−148. doi: 10.1144/SP304.7 [22] 徐夕生, 邱检生. 火成岩岩石学[M]. 北京: 科学出版社, 2010: 104−122.Xu Xisheng, Qiu Jiansheng. Igneous Petrology[M]. Beijing: Science Press, 2010: 104−122. [23] Morse S A. Cation diffusion in plagioclase feldspar[J]. Science, 1984, 225(4661): 504−505. doi: 10.1126/science.225.4661.504 [24] 杨帆, 黄小龙, 李洁. 华南长城岭晚白垩世斜斑玄武岩的岩浆作用过程与岩石成因制约[J]. 岩石学报, 2018, 34(1): 157−171.Yang Fan, Huang Xiaolong, Li Jie. Magma processes and petrogenesis of the Late Cretaceous plagioclase-phyric basalt in the Changchengling area, South China[J]. Acta Petrologica Sinica, 2018, 34(1): 157−171. [25] 张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(2): 234−248. doi: 10.3969/j.issn.1671-6647.2017.02.008Zhang Pingyang, Yan Quanshu. Compositions of plagioclase hosted by basaltic rocks from the Mariana Trough and their petrogenesis significances[J]. Advances in Marine Science, 2017, 35(2): 234−248. doi: 10.3969/j.issn.1671-6647.2017.02.008 [26] Yang Fan, Huang Xiaolong, Xu Yigang, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges: evidence from plagioclase in mid-ocean ridge basalts from the South China Sea[J]. Journal of Petrology, 2019, 60(6): 1135−1162. doi: 10.1093/petrology/egz027 [27] Costa F, Coogan L A, Chakraborty S. The time scales of magma mixing and mingling involving primitive melts and melt-mush interaction at mid-ocean ridges[J]. Contributions to Mineralogy and Petrology, 2010, 159(3): 371−387. doi: 10.1007/s00410-009-0432-3 [28] Yan Q S, Shi X F. Data report: major and trace element and Sr-Nd-Pb isotope analyses for basement rocks from the CRISP-A transect drilled during Expeditions 334 and 344[R/OL]. (2016-02-19) [2019-03-25]. http://publications.iodp.org/proceedings/344/205/205_.htm. [29] Maury R C, Bougault H, Joron J L, et al. Volcanic rocks from Leg 67 sites: mineralogy and geochemistry[R/OL]. [2019-03-25]. http://deepseadrilling.org/67/volume/dsdp67_23.pdf. [30] 鄢全树, 石学法, 刘季花, 等. 南海新生代碱性玄武岩中斜长石矿物的化学成分及意义[J]. 矿物学报, 2008, 28(2): 135−142. doi: 10.3321/j.issn:1000-4734.2008.02.005Yan Quanshu, Shi Xuefa, Liu Jihua, et al. Chemical composition of plagioclase in Cenozoic Alkali basalt from the South China Sea[J]. Acta Mineralogica Sinica, 2008, 28(2): 135−142. doi: 10.3321/j.issn:1000-4734.2008.02.005 [31] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223−253. [32] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19 [33] Norman M, Garcia M O, Pietruszka A J. Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawai’i, and petrogenesis of differentiated rift-zone lavas[J]. American Mineralogist, 2005, 90(5/6): 888−899. [34] Putirka K D. Igneous thermometers and barometers based on plagioclase+liquid equilibria: tests of some existing models and new calibrations[J]. American Mineralogist, 2005, 90(2/3): 336−346. [35] Kudo A M, Weill D F. An igneous plagioclase thermometer[J]. Contributions to Mineralogy and Petrology, 1970, 25(1): 52−65. doi: 10.1007/BF00383062 [36] Mathez E A. Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks[J]. Contributions to Mineralogy and Petrology, 1973, 41(1): 61−72. doi: 10.1007/BF00377654 [37] Kuo L C, Kirkpatrick R J. Pre-eruption history of phyric basalts from DSDP Legs 45 and 46: evidence from morphology and zoning patterns in plagioclase[J]. Contributions to Mineralogy and Petrology, 1982, 79(1): 13−27. doi: 10.1007/BF00376957 [38] Takagi D, Sato H, Nakagawa M. Experimental study of a low-alkali tholeiite at 1-5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite[J]. Contributions to Mineralogy and Petrology, 2005, 149(5): 527−540. doi: 10.1007/s00410-005-0666-7 [39] 李敏. EPR和SWIR玄武岩岩石地球化学特征对比及其对岩浆过程的指示意义[D]. 青岛: 中国海洋大学, 2014.Li Min. Petrogeochemical characteristics comparison and implications for magmatic processes of the MORBs between EPR and SWIR[D]. Qingdao: Ocean University of China, 2014. [40] 陈博, 朱永峰. 新疆百口泉闪长岩中高An值斜长石的成因及岩石学意义[J]. 岩石学报, 2015, 31(2): 479−490.Chen Bo, Zhu Yongfeng. The origin of high-An plagioclase in diorite from Baikouquan, Xinjiang and its petrogenetic significance[J]. Acta Petrologica Sinica, 2015, 31(2): 479−490. [41] Bindeman I N, Davis A M, Drake M J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements[J]. Geochimica et Cosmochimica Acta, 1998, 62(7): 1175−1193. doi: 10.1016/S0016-7037(98)00047-7 [42] Ginibre C, Wörner G, Kronz A. Minor-and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 143(3): 300−315. doi: 10.1007/s00410-002-0351-z [43] Nelson S T, Montana A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression[J]. American Mineralogist, 1992, 77(11/12): 1242−1249. [44] Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497: 146−161. doi: 10.1016/j.chemgeo.2018.09.002 [45] 李原鸿, 黄方, 于慧敏, 等. 加勒比海小安德列斯岛弧Kick’em Jenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化[J]. 岩石学报, 2016, 32(2): 605−616.Li Yuanhong, Huang Fang, Yu Huimin, et al. Plagioclase zoning in submarine volcano Kick’em Jenny, Lesser Antilles Arc: insights into magma evolution processes in oceanic arc magma chamber[J]. Acta Petrologica Sinica, 2016, 32(2): 605−616. [46] Blundy J, Cashman K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631−650. doi: 10.1007/s004100000219 [47] 李俊录, 崔建军, 张维. 东太平洋海隆1°N洋中脊玄武岩斜长石斑晶的化学特征及其对岩浆作用的指示意义[J]. 地质与勘探, 2019, 55(2): 562−569.Li Junlu, Cui Jianjun, Zhang Wei. Chemical characteristics of plagioclase phenocrysts in MORBs from the East Pacific Rise 1°N and implication for magmatic processes[J]. Geology and Exploration, 2019, 55(2): 562−569.