留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉格朗日拟序结构的黑潮区域海流运输结构提取和分析

田丰林 任一丹 何遒 陈戈

田丰林,任一丹,何遒,等. 基于拉格朗日拟序结构的黑潮区域海流运输结构提取和分析[J]. 海洋学报,2020,42(5):12–21,doi:10.3969/j.issn.0253−4193.2020.05.002
引用本文: 田丰林,任一丹,何遒,等. 基于拉格朗日拟序结构的黑潮区域海流运输结构提取和分析[J]. 海洋学报,2020,42(5):12–21,doi:10.3969/j.issn. 0253−4193.2020.05.002
Tian Fenglin,Ren Yidan,He Qiu, et al. Extracting and analyzing current transport structures in the Kuroshio area based on Lagrangian coherent structures[J]. Haiyang Xuebao,2020, 42(5):12–21,doi:10.3969/j.issn.0253−4193.2020.05.002
Citation: Tian Fenglin,Ren Yidan,He Qiu, et al. Extracting and analyzing current transport structures in the Kuroshio area based on Lagrangian coherent structures[J]. Haiyang Xuebao,2020, 42(5):12–21,doi:10.3969/j.issn.0253−4193.2020.05.002

基于拉格朗日拟序结构的黑潮区域海流运输结构提取和分析

doi: 10.3969/j.issn.0253-4193.2020.05.002
基金项目: 山东省海洋科技基金(2018SDKJ0102-08);国家重点研发项目(2016YFC1401008,2017YFA0603203);中央高校基础研究基金(201762005)。
详细信息
    作者简介:

    田丰林(1978-),男,山东省青岛市人,博士,副教授,主要从事海洋信息可视化与海洋遥感工作。E-mail:tianfenglin@ouc.edu.cn

    通讯作者:

    陈戈(1965-),男,博士,教授/博士生导师,主要从事海洋遥感与大数据工作。E-mail:gechen@ouc.edu.cn

  • 中图分类号: P731.21

Extracting and analyzing current transport structures in the Kuroshio area based on Lagrangian coherent structures

  • 摘要: 海流的拉格朗日运动对于研究物质输送有着重要意义,拉格朗日拟序结构(LCSs)作为研究海流结构的新型方法,相比于传统欧拉方法更为客观。本文提出了一种新的计算LCSs束的方法,基于25年的平均速度场,利用变分方法计算得到黑潮区域的气候态LCSs,并通过简化合并的方法得到了气候态LCSs束,该LCSs束能够突出地显示出海流特性和运输模式,其代表的平均拉格朗日环流有很强的约束作用,且具有鲁棒性。最终我们获得了气候态下12个月份的流场结构图,揭示了月周期性拉格朗日环流规律。本文还利用虚拟粒子输运、多年浮标轨迹以及气候态温盐异常3种方法进行了验证,与拉格朗日运输模式相吻合,证明了海流拉格朗日拟序结构的准确性和可靠性。
  • 图  1  双曲线型LCSs(a)和抛物线型LCSs(b)

    Fig.  1  Hyperbolic LCSs(a)and parabolic LCSs(b)

    图  2  网格点与辅助点的位置

    Fig.  2  Locations of grid points and auxiliary points

    图  3  气候态下的吸引型LCSs和FTLE场

    a−l分别代表1−12月

    Fig.  3  Monthly climatological attracting LCSs and FTLE fields

    a to l represents January to December respectively

    图  4  保留100%(a),40%(b)和20%(c)的吸引型LCSs

    Fig.  4  Reserved attracting LCSs for 100% (a), 40% (b) and 20% (c)

    图  5  LCSs简化合并流程图(a)和相似度表示例(b,c)

    假设相似度表b中S24最小,将L2和L4合并为L6,得到相似度表c

    Fig.  5  Flow chart of simplifing and merging LCSs (a) and an example of similarity table (b, c)

    Assume that S24 in table b is the minimum, merge L2 and L4 into L6, and the similarity table c is obtained

    图  6  合并前的LCSs (a)和合并后的LCSs束(b)示意图

    Fig.  6  LCSs before merging (a) and LCSs bundles after merging (b)

    图  7  12个月的气候态流场结构

    a−l分别代表1−12月

    Fig.  7  Monthly climatological flow field structures

    a to l represents January to December respectively

    图  8  基于多年平均流速提取的黑潮主轴[8](a)和 170 cm海表面高度轮廓线定义的黑潮延伸体路径[4](b)

    Fig.  8  Kuroshio axis extracted based on average velocity[8] (a) and paths of the Kuroshio Extension defined by the 170 cm contours in sea surface height fields[4] (b)

    图  9  示踪粒子初始位置(a)和运动10 d(b)、20 d(c)、30 d(d)后的LCSs输运图

    Fig.  9  Initial position (a) and advected images for 10 days (b), 20 days (c) and 30 days (d) of particles

    图  10  1月(a)和6月(b)的浮标轨迹

    Fig.  10  Trajectories of drifters for January (a) and June (b)

    图  11  气候态温盐异常分布

    a.0 m处温度异常;b.0 m处盐度异常;c.50 m处温度异常;d.50 m处盐度异常

    Fig.  11  Distributions of climatological temperature and salt anomalies

    a.Temperature anomalies at 0 m; b. salinity anomalies at 0 m; c. temperature anomalies at 50 m; d. salinity anomalies at 50 m

  • [1] 张灿影, 冯志纲, 张晓琨, 等. 黑潮研究进展分析[J]. 世界科技研究与发展, 2017, 39(3): 239−249.

    Zhang Canying, Feng Zhigang, Zhang Xiaokun, et al. Analysis on research progress of Kuroshio[J]. World Sci-Tech R&D, 2017, 39(3): 239−249.
    [2] Qiu Bo. The Kuroshio extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction[J]. Journal of Oceanography, 2002, 58(1): 57−75. doi: 10.1023/A:1015824717293
    [3] Jayne S R, Hogg N G, Waterman S N, et al. The Kuroshio extension and its recirculation gyres[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2088−2099. doi: 10.1016/j.dsr.2009.08.006
    [4] Qiu Bo, Chen Shuiming. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090−2103. doi: 10.1175/JPO2807.1
    [5] 刘晓辉, 陈大可, 董昌明, 等. 利用拉格朗日方法研究台湾东北黑潮路径变化[J]. 中国科学: 地球科学, 2016, 59(2): 268−280. doi: 10.1007/s11430-015-5176-5

    Liu Xiaohui, Chen Dake, Dong Changming, et al. Variation of the Kuroshio intrusion pathways northeast of Taiwan using the Lagrangian method[J]. Science China: Earth Sciences, 2016, 59(2): 268−280. doi: 10.1007/s11430-015-5176-5
    [6] Yamashiro T, Kawabe M. Monitoring of position of the Kuroshio axis in the Tokara Strait using sea level data[J]. Journal of Oceanography, 1996, 52(6): 675−687. doi: 10.1007/BF02239459
    [7] Yamashiro T, Kawabe M. Variations of the Kuroshio axis south of Kyushu in relation to the large meander of the Kuroshio[J]. Journal of Oceanography, 2002, 58(3): 487−503. doi: 10.1023/A:1021265315858
    [8] Ambe D, Imawaki S, Uchida H, et al. Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys[J]. Journal of Oceanography, 2004, 60(2): 375−382. doi: 10.1023/B:JOCE.0000038343.31468.fe
    [9] Tseng Y H, Shen Maolin, Jan S, et al. Validation of the Kuroshio current system in the dual-domain Pacific Ocean model framework[J]. Progress in Oceanography, 2012, 105: 102−124. doi: 10.1016/j.pocean.2012.04.003
    [10] Nan Feng, Xue Huijie, Yu Fei. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137: 314−333. doi: 10.1016/j.pocean.2014.05.012
    [11] Haller G, Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D: Nonlinear Phenomena, 2000, 147(3/4): 352−370.
    [12] Peacock T, Dabiri J. Introduction to focus issue: Lagrangian coherent structures[J]. Chaos, 2010, 20(1): 017501. doi: 10.1063/1.3278173
    [13] Peacock T, Haller G. Lagrangian coherent structures: the hidden skeleton of fluid flows[J]. Physics Today, 2013, 66(2): 41−47. doi: 10.1063/PT.3.1886
    [14] Haller G. Lagrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47: 137−162. doi: 10.1146/annurev-fluid-010313-141322
    [15] Samelson R M. Lagrangian motion, coherent structures, and lines of persistent material strain[J]. Annual Review of Marine Science, 2013, 5: 137−163. doi: 10.1146/annurev-marine-120710-100819
    [16] Hadjighasem A, Farazmand M, Blazevski D, et al. A critical comparison of Lagrangian methods for coherent structure detection[J]. Chaos, 2017, 27(5): 053104. doi: 10.1063/1.4982720
    [17] Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 2005, 212(3/4): 271−304.
    [18] d’Ovidio F, Fernández V, Hernández-García E, et al. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents[J]. Geophysical Research Letters, 2004, 31(17): L17203.
    [19] 黄高龙, 韦惺, 詹海刚. 吕宋海峡浮标轨迹的拉格朗日拟序结构分析[J]. 热带海洋学报, 2015, 34(1): 15−22. doi: 10.3969/j.issn.1009-5470.2015.01.003

    Huang Gaolong, Wei Xing, Zhan Haigang. Lagrangian analysis of drifter trajectories near the Luzon Strait[J]. Journal of Tropical Oceanography, 2015, 34(1): 15−22. doi: 10.3969/j.issn.1009-5470.2015.01.003
    [20] Haller G. A variational theory of hyperbolic Lagrangian Coherent Structures[J]. Physica D: Nonlinear Phenomena, 2011, 240(7): 574−598. doi: 10.1016/j.physd.2010.11.010
    [21] Farazmand M, Haller G. Computing Lagrangian coherent structures from their variational theory[J]. Chaos, 2012, 22(1): 013128. doi: 10.1063/1.3690153
    [22] Farazmand M, Haller G. Attracting and repelling Lagrangian coherent structures from a single computation[J]. Chaos, 2013, 23(2): 023101. doi: 10.1063/1.4800210
    [23] Farazmand M, Blazevski D, Haller G. Shearless transport barriers in unsteady two-dimensional flows and maps[J]. Physica D: Nonlinear Phenomena, 2014, 278-279: 44−57. doi: 10.1016/j.physd.2014.03.008
    [24] Haller G, Beron-Vera F J. Coherent Lagrangian vortices: the black holes of turbulence[J]. Journal of Fluid Mechanics, 2013, 731: R4. doi: 10.1017/jfm.2013.391
    [25] Wang Y, Olascoaga M J, Beron-Vera F J. Coherent water transport across the South Atlantic[J]. Geophysical Research Letters, 2015, 42(10): 4072−4079. doi: 10.1002/2015GL064089
    [26] Beron-Vera F J, Olascoaga M J, Brown M G, et al. Invariant-tori-like Lagrangian coherent structures in geophysical flows[J]. Chaos, 2010, 20(1): 017514. doi: 10.1063/1.3271342
    [27] Yuan G C, Pratt L J, Jones C K R T. Cross-jet lagrangian transport and mixing in a 2½-layer model[J]. Journal of Physical Oceanography, 2004, 34(9): 1991−2005. doi: 10.1175/1520-0485(2004)034<1991:CLTAMI>2.0.CO;2
    [28] Beron-Vera F J, Olascoaga M J, Brown M G, et al. Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere[J]. Journal of the Atmospheric Sciences, 2012, 69(2): 753−767. doi: 10.1175/JAS-D-11-084.1
    [29] Olascoaga M J, Beron-Vera F J, Haller G, et al. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures[J]. Geophysical Research Letters, 2013, 40(23): 6171−6175. doi: 10.1002/2013GL058624
    [30] Copernicus Marine Environment Monitoring Service. SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047[DB/OL]. [2019–01–05]. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
    [31] NOAA‘s Atlantic Oceanographic and Meteorological Laboratory. Global Drifter Data[DB/OL].[2019–01–05]. http://www.aoml.noaa.gov/phod/gdp/science.php.
    [32] Copernicus Marine Environment Monitoring Service. MULTIOBS_GLO_PHY_REP_015_002[DB/OL]. [2019–01–05]. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002.
    [33] Onu K, Huhn F, Haller G. LCS tool: a computational platform for Lagrangian coherent structures[J]. Journal of Computational Science, 2015, 7: 26−36. doi: 10.1016/j.jocs.2014.12.002
    [34] Duran R, Beron-Vera F J, Olascoaga M J. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: an application to the Gulf of Mexico[J]. Scientific Reports, 2018, 8: 5218. doi: 10.1038/s41598-018-23121-y
    [35] Yu Hongfeng, Wang Chaoli, Shene C K, et al. Hierarchical streamline bundles[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1353−1367. doi: 10.1109/TVCG.2011.155
    [36] 王辉赞, 魏林进, 张全礼, 等. 台湾以东黑潮路径识别与变化规律[J]. 海洋与湖沼, 2018, 49(2): 271−279.

    Wang Huizan, Wei Linjin, Zhang Quanli, et al. Identification of the Kuroshio path east of Taiwan and its variation[J]. Oceanologia et Limnologia Sinica, 2018, 49(2): 271−279.
    [37] 于振娟. 东海黑潮流轴的变化及日本以南黑潮大弯曲同青岛降水量的关系[J]. 海洋科学, 1988(4): 6−11.

    Yu Zhenjuan. Relationship of variation of axial position of the Kuroshio in the East China Sea and its meanders south of Japan with the precipitation in Qingdao[J]. Marine Science, 1988(4): 6−11.
  • 加载中
图(11)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  35
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-26
  • 修回日期:  2020-03-26
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回